Description: Lemma for heibor . The function M is a set of point-and-radius pairs suitable for application to caubl . (Contributed by Jeff Madsen, 23-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | heibor.1 | |
|
heibor.3 | |
||
heibor.4 | |
||
heibor.5 | |
||
heibor.6 | |
||
heibor.7 | |
||
heibor.8 | |
||
heibor.9 | |
||
heibor.10 | |
||
heibor.11 | |
||
heibor.12 | |
||
Assertion | heiborlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | heibor.1 | |
|
2 | heibor.3 | |
|
3 | heibor.4 | |
|
4 | heibor.5 | |
|
5 | heibor.6 | |
|
6 | heibor.7 | |
|
7 | heibor.8 | |
|
8 | heibor.9 | |
|
9 | heibor.10 | |
|
10 | heibor.11 | |
|
11 | heibor.12 | |
|
12 | nnnn0 | |
|
13 | inss1 | |
|
14 | 6 | ffvelcdmda | |
15 | 13 14 | sselid | |
16 | 15 | elpwid | |
17 | 1 2 3 4 5 6 7 8 9 10 | heiborlem4 | |
18 | fvex | |
|
19 | vex | |
|
20 | 1 2 3 18 19 | heiborlem2 | |
21 | 20 | simp2bi | |
22 | 17 21 | syl | |
23 | 16 22 | sseldd | |
24 | 12 23 | sylan2 | |
25 | 24 | ralrimiva | |
26 | fveq2 | |
|
27 | 26 | eleq1d | |
28 | 27 | cbvralvw | |
29 | 25 28 | sylib | |
30 | 3re | |
|
31 | 3pos | |
|
32 | 30 31 | elrpii | |
33 | 2nn | |
|
34 | nnnn0 | |
|
35 | nnexpcl | |
|
36 | 33 34 35 | sylancr | |
37 | 36 | nnrpd | |
38 | rpdivcl | |
|
39 | 32 37 38 | sylancr | |
40 | opelxpi | |
|
41 | 40 | expcom | |
42 | 39 41 | syl | |
43 | 42 | ralimia | |
44 | 29 43 | syl | |
45 | 11 | fmpt | |
46 | 44 45 | sylib | |