Metamath Proof Explorer


Theorem heiborlem5

Description: Lemma for heibor . The function M is a set of point-and-radius pairs suitable for application to caubl . (Contributed by Jeff Madsen, 23-Jan-2014)

Ref Expression
Hypotheses heibor.1 J=MetOpenD
heibor.3 K=u|¬v𝒫UFinuv
heibor.4 G=yn|n0yFnyBnK
heibor.5 B=zX,m0zballD12m
heibor.6 φDCMetX
heibor.7 φF:0𝒫XFin
heibor.8 φn0X=yFnyBn
heibor.9 φxGTxG2ndx+1BxTxB2ndx+1K
heibor.10 φCG0
heibor.11 S=seq0Tm0ifm=0Cm1
heibor.12 M=nSn32n
Assertion heiborlem5 φM:X×+

Proof

Step Hyp Ref Expression
1 heibor.1 J=MetOpenD
2 heibor.3 K=u|¬v𝒫UFinuv
3 heibor.4 G=yn|n0yFnyBnK
4 heibor.5 B=zX,m0zballD12m
5 heibor.6 φDCMetX
6 heibor.7 φF:0𝒫XFin
7 heibor.8 φn0X=yFnyBn
8 heibor.9 φxGTxG2ndx+1BxTxB2ndx+1K
9 heibor.10 φCG0
10 heibor.11 S=seq0Tm0ifm=0Cm1
11 heibor.12 M=nSn32n
12 nnnn0 kk0
13 inss1 𝒫XFin𝒫X
14 6 ffvelcdmda φk0Fk𝒫XFin
15 13 14 sselid φk0Fk𝒫X
16 15 elpwid φk0FkX
17 1 2 3 4 5 6 7 8 9 10 heiborlem4 φk0SkGk
18 fvex SkV
19 vex kV
20 1 2 3 18 19 heiborlem2 SkGkk0SkFkSkBkK
21 20 simp2bi SkGkSkFk
22 17 21 syl φk0SkFk
23 16 22 sseldd φk0SkX
24 12 23 sylan2 φkSkX
25 24 ralrimiva φkSkX
26 fveq2 k=nSk=Sn
27 26 eleq1d k=nSkXSnX
28 27 cbvralvw kSkXnSnX
29 25 28 sylib φnSnX
30 3re 3
31 3pos 0<3
32 30 31 elrpii 3+
33 2nn 2
34 nnnn0 nn0
35 nnexpcl 2n02n
36 33 34 35 sylancr n2n
37 36 nnrpd n2n+
38 rpdivcl 3+2n+32n+
39 32 37 38 sylancr n32n+
40 opelxpi SnX32n+Sn32nX×+
41 40 expcom 32n+SnXSn32nX×+
42 39 41 syl nSnXSn32nX×+
43 42 ralimia nSnXnSn32nX×+
44 29 43 syl φnSn32nX×+
45 11 fmpt nSn32nX×+M:X×+
46 44 45 sylib φM:X×+