| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|
| 2 |
|
heibor.3 |
|
| 3 |
|
heibor.4 |
|
| 4 |
|
heibor.5 |
|
| 5 |
|
heibor.6 |
|
| 6 |
|
heibor.7 |
|
| 7 |
|
heibor.8 |
|
| 8 |
|
heibor.9 |
|
| 9 |
|
heibor.10 |
|
| 10 |
|
heibor.11 |
|
| 11 |
|
heibor.12 |
|
| 12 |
|
nnnn0 |
|
| 13 |
|
inss1 |
|
| 14 |
6
|
ffvelcdmda |
|
| 15 |
13 14
|
sselid |
|
| 16 |
15
|
elpwid |
|
| 17 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
|
| 18 |
|
fvex |
|
| 19 |
|
vex |
|
| 20 |
1 2 3 18 19
|
heiborlem2 |
|
| 21 |
20
|
simp2bi |
|
| 22 |
17 21
|
syl |
|
| 23 |
16 22
|
sseldd |
|
| 24 |
12 23
|
sylan2 |
|
| 25 |
24
|
ralrimiva |
|
| 26 |
|
fveq2 |
|
| 27 |
26
|
eleq1d |
|
| 28 |
27
|
cbvralvw |
|
| 29 |
25 28
|
sylib |
|
| 30 |
|
3re |
|
| 31 |
|
3pos |
|
| 32 |
30 31
|
elrpii |
|
| 33 |
|
2nn |
|
| 34 |
|
nnnn0 |
|
| 35 |
|
nnexpcl |
|
| 36 |
33 34 35
|
sylancr |
|
| 37 |
36
|
nnrpd |
|
| 38 |
|
rpdivcl |
|
| 39 |
32 37 38
|
sylancr |
|
| 40 |
|
opelxpi |
|
| 41 |
40
|
expcom |
|
| 42 |
39 41
|
syl |
|
| 43 |
42
|
ralimia |
|
| 44 |
29 43
|
syl |
|
| 45 |
11
|
fmpt |
|
| 46 |
44 45
|
sylib |
|