Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
|
2 |
|
heibor.3 |
|
3 |
|
heibor.4 |
|
4 |
|
heibor.5 |
|
5 |
|
heibor.6 |
|
6 |
|
heibor.7 |
|
7 |
|
heibor.8 |
|
8 |
|
heibor.9 |
|
9 |
|
heibor.10 |
|
10 |
|
heibor.11 |
|
11 |
|
fveq2 |
|
12 |
|
id |
|
13 |
11 12
|
breq12d |
|
14 |
13
|
imbi2d |
|
15 |
|
fveq2 |
|
16 |
|
id |
|
17 |
15 16
|
breq12d |
|
18 |
17
|
imbi2d |
|
19 |
|
fveq2 |
|
20 |
|
id |
|
21 |
19 20
|
breq12d |
|
22 |
21
|
imbi2d |
|
23 |
|
fveq2 |
|
24 |
|
id |
|
25 |
23 24
|
breq12d |
|
26 |
25
|
imbi2d |
|
27 |
10
|
fveq1i |
|
28 |
|
0z |
|
29 |
|
seq1 |
|
30 |
28 29
|
ax-mp |
|
31 |
27 30
|
eqtri |
|
32 |
|
0nn0 |
|
33 |
3
|
relopabiv |
|
34 |
33
|
brrelex1i |
|
35 |
9 34
|
syl |
|
36 |
|
iftrue |
|
37 |
|
eqid |
|
38 |
36 37
|
fvmptg |
|
39 |
32 35 38
|
sylancr |
|
40 |
31 39
|
eqtrid |
|
41 |
40 9
|
eqbrtrd |
|
42 |
|
df-br |
|
43 |
|
fveq2 |
|
44 |
|
df-ov |
|
45 |
43 44
|
eqtr4di |
|
46 |
|
fvex |
|
47 |
|
vex |
|
48 |
46 47
|
op2ndd |
|
49 |
48
|
oveq1d |
|
50 |
45 49
|
breq12d |
|
51 |
|
fveq2 |
|
52 |
|
df-ov |
|
53 |
51 52
|
eqtr4di |
|
54 |
45 49
|
oveq12d |
|
55 |
53 54
|
ineq12d |
|
56 |
55
|
eleq1d |
|
57 |
50 56
|
anbi12d |
|
58 |
57
|
rspccv |
|
59 |
8 58
|
syl |
|
60 |
42 59
|
syl5bi |
|
61 |
|
seqp1 |
|
62 |
|
nn0uz |
|
63 |
61 62
|
eleq2s |
|
64 |
10
|
fveq1i |
|
65 |
10
|
fveq1i |
|
66 |
65
|
oveq1i |
|
67 |
63 64 66
|
3eqtr4g |
|
68 |
|
eqeq1 |
|
69 |
|
oveq1 |
|
70 |
68 69
|
ifbieq2d |
|
71 |
|
peano2nn0 |
|
72 |
|
nn0p1nn |
|
73 |
|
nnne0 |
|
74 |
73
|
neneqd |
|
75 |
|
iffalse |
|
76 |
72 74 75
|
3syl |
|
77 |
|
ovex |
|
78 |
76 77
|
eqeltrdi |
|
79 |
37 70 71 78
|
fvmptd3 |
|
80 |
|
nn0cn |
|
81 |
|
ax-1cn |
|
82 |
|
pncan |
|
83 |
80 81 82
|
sylancl |
|
84 |
79 76 83
|
3eqtrd |
|
85 |
84
|
oveq2d |
|
86 |
67 85
|
eqtrd |
|
87 |
86
|
breq1d |
|
88 |
87
|
biimprd |
|
89 |
88
|
adantrd |
|
90 |
60 89
|
syl9r |
|
91 |
90
|
a2d |
|
92 |
14 18 22 26 41 91
|
nn0ind |
|
93 |
92
|
impcom |
|