Metamath Proof Explorer


Theorem hgmaprnN

Description: Part of proof of part 16 in Baer p. 50 line 23, Fs=G, except that we use the original vector space scalars for the range. (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprn.h H=LHypK
hgmaprn.u U=DVecHKW
hgmaprn.r R=ScalarU
hgmaprn.b B=BaseR
hgmaprn.g G=HGMapKW
hgmaprn.k φKHLWH
Assertion hgmaprnN φranG=B

Proof

Step Hyp Ref Expression
1 hgmaprn.h H=LHypK
2 hgmaprn.u U=DVecHKW
3 hgmaprn.r R=ScalarU
4 hgmaprn.b B=BaseR
5 hgmaprn.g G=HGMapKW
6 hgmaprn.k φKHLWH
7 1 2 3 4 5 6 hgmapfnN φGFnB
8 eqid LCDualKW=LCDualKW
9 eqid ScalarLCDualKW=ScalarLCDualKW
10 eqid BaseScalarLCDualKW=BaseScalarLCDualKW
11 6 adantr φzBKHLWH
12 simpr φzBzB
13 1 2 3 4 8 9 10 5 11 12 hgmapdcl φzBGzBaseScalarLCDualKW
14 13 ralrimiva φzBGzBaseScalarLCDualKW
15 fnfvrnss GFnBzBGzBaseScalarLCDualKWranGBaseScalarLCDualKW
16 7 14 15 syl2anc φranGBaseScalarLCDualKW
17 eqid BaseU=BaseU
18 eqid U=U
19 eqid 0U=0U
20 eqid BaseLCDualKW=BaseLCDualKW
21 eqid LCDualKW=LCDualKW
22 eqid 0LCDualKW=0LCDualKW
23 eqid HDMapKW=HDMapKW
24 6 adantr φzBaseScalarLCDualKWKHLWH
25 simpr φzBaseScalarLCDualKWzBaseScalarLCDualKW
26 1 2 17 3 4 18 19 8 20 9 10 21 22 23 5 24 25 hgmaprnlem5N φzBaseScalarLCDualKWzranG
27 16 26 eqelssd φranG=BaseScalarLCDualKW
28 1 2 3 4 8 9 10 6 lcdsbase φBaseScalarLCDualKW=B
29 27 28 eqtrd φranG=B