Metamath Proof Explorer


Theorem hgmapvvlem2

Description: Lemma for hgmapvv . Eliminate Y (Baer's s). (Contributed by NM, 13-Jun-2015)

Ref Expression
Hypotheses hdmapglem6.h H=LHypK
hdmapglem6.e E=IBaseKILTrnKW
hdmapglem6.o O=ocHKW
hdmapglem6.u U=DVecHKW
hdmapglem6.v V=BaseU
hdmapglem6.q ·˙=U
hdmapglem6.r R=ScalarU
hdmapglem6.b B=BaseR
hdmapglem6.t ×˙=R
hdmapglem6.z 0˙=0R
hdmapglem6.i 1˙=1R
hdmapglem6.n N=invrR
hdmapglem6.s S=HDMapKW
hdmapglem6.g G=HGMapKW
hdmapglem6.k φKHLWH
hdmapglem6.x φXB0˙
hdmapglem6.c φCOE
hdmapglem6.d φDOE
hdmapglem6.cd φSDC=1˙
Assertion hgmapvvlem2 φGGX=X

Proof

Step Hyp Ref Expression
1 hdmapglem6.h H=LHypK
2 hdmapglem6.e E=IBaseKILTrnKW
3 hdmapglem6.o O=ocHKW
4 hdmapglem6.u U=DVecHKW
5 hdmapglem6.v V=BaseU
6 hdmapglem6.q ·˙=U
7 hdmapglem6.r R=ScalarU
8 hdmapglem6.b B=BaseR
9 hdmapglem6.t ×˙=R
10 hdmapglem6.z 0˙=0R
11 hdmapglem6.i 1˙=1R
12 hdmapglem6.n N=invrR
13 hdmapglem6.s S=HDMapKW
14 hdmapglem6.g G=HGMapKW
15 hdmapglem6.k φKHLWH
16 hdmapglem6.x φXB0˙
17 hdmapglem6.c φCOE
18 hdmapglem6.d φDOE
19 hdmapglem6.cd φSDC=1˙
20 1 4 15 dvhlvec φULVec
21 7 lvecdrng ULVecRDivRing
22 20 21 syl φRDivRing
23 16 eldifad φXB
24 1 4 7 8 14 15 23 hgmapcl φGXB
25 eldifsni XB0˙X0˙
26 16 25 syl φX0˙
27 1 4 7 8 10 14 15 23 hgmapeq0 φGX=0˙X=0˙
28 27 necon3bid φGX0˙X0˙
29 26 28 mpbird φGX0˙
30 8 10 12 drnginvrcl RDivRingGXBGX0˙NGXB
31 22 24 29 30 syl3anc φNGXB
32 8 10 12 drnginvrn0 RDivRingGXBGX0˙NGX0˙
33 22 24 29 32 syl3anc φNGX0˙
34 eldifsn NGXB0˙NGXBNGX0˙
35 31 33 34 sylanbrc φNGXB0˙
36 8 10 9 11 12 drnginvrl RDivRingGXBGX0˙NGX×˙GX=1˙
37 22 24 29 36 syl3anc φNGX×˙GX=1˙
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 35 37 hgmapvvlem1 φGGX=X