Description: The orthocomplement for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015) (Revised by Mario Carneiro, 29-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlhil0.h | |
|
hlhil0.l | |
||
hlhil0.u | |
||
hlhil0.k | |
||
hlhilocv.v | |
||
hlhilocv.n | |
||
hlhilocv.o | |
||
hlhilocv.x | |
||
Assertion | hlhilocv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhil0.h | |
|
2 | hlhil0.l | |
|
3 | hlhil0.u | |
|
4 | hlhil0.k | |
|
5 | hlhilocv.v | |
|
6 | hlhilocv.n | |
|
7 | hlhilocv.o | |
|
8 | hlhilocv.x | |
|
9 | 1 3 4 2 5 | hlhilbase | |
10 | rabeq | |
|
11 | 9 10 | syl | |
12 | eqid | |
|
13 | 4 | ad2antrr | |
14 | eqid | |
|
15 | simplr | |
|
16 | 8 | adantr | |
17 | 16 | sselda | |
18 | 1 2 5 12 3 13 14 15 17 | hlhilipval | |
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | 1 2 19 3 20 4 21 | hlhils0 | |
23 | 22 | eqcomd | |
24 | 23 | ad2antrr | |
25 | 18 24 | eqeq12d | |
26 | 25 | ralbidva | |
27 | 26 | rabbidva | |
28 | 11 27 | eqtr3d | |
29 | 8 9 | sseqtrd | |
30 | eqid | |
|
31 | eqid | |
|
32 | 30 14 20 31 7 | ocvval | |
33 | 29 32 | syl | |
34 | 1 2 5 19 21 6 12 4 8 | hdmapoc | |
35 | 28 33 34 | 3eqtr4d | |