Metamath Proof Explorer


Theorem hlhilocv

Description: The orthocomplement for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015) (Revised by Mario Carneiro, 29-Jun-2015)

Ref Expression
Hypotheses hlhil0.h H=LHypK
hlhil0.l L=DVecHKW
hlhil0.u U=HLHilKW
hlhil0.k φKHLWH
hlhilocv.v V=BaseL
hlhilocv.n N=ocHKW
hlhilocv.o O=ocvU
hlhilocv.x φXV
Assertion hlhilocv φOX=NX

Proof

Step Hyp Ref Expression
1 hlhil0.h H=LHypK
2 hlhil0.l L=DVecHKW
3 hlhil0.u U=HLHilKW
4 hlhil0.k φKHLWH
5 hlhilocv.v V=BaseL
6 hlhilocv.n N=ocHKW
7 hlhilocv.o O=ocvU
8 hlhilocv.x φXV
9 1 3 4 2 5 hlhilbase φV=BaseU
10 rabeq V=BaseUyV|zXy𝑖Uz=0ScalarU=yBaseU|zXy𝑖Uz=0ScalarU
11 9 10 syl φyV|zXy𝑖Uz=0ScalarU=yBaseU|zXy𝑖Uz=0ScalarU
12 eqid HDMapKW=HDMapKW
13 4 ad2antrr φyVzXKHLWH
14 eqid 𝑖U=𝑖U
15 simplr φyVzXyV
16 8 adantr φyVXV
17 16 sselda φyVzXzV
18 1 2 5 12 3 13 14 15 17 hlhilipval φyVzXy𝑖Uz=HDMapKWzy
19 eqid ScalarL=ScalarL
20 eqid ScalarU=ScalarU
21 eqid 0ScalarL=0ScalarL
22 1 2 19 3 20 4 21 hlhils0 φ0ScalarL=0ScalarU
23 22 eqcomd φ0ScalarU=0ScalarL
24 23 ad2antrr φyVzX0ScalarU=0ScalarL
25 18 24 eqeq12d φyVzXy𝑖Uz=0ScalarUHDMapKWzy=0ScalarL
26 25 ralbidva φyVzXy𝑖Uz=0ScalarUzXHDMapKWzy=0ScalarL
27 26 rabbidva φyV|zXy𝑖Uz=0ScalarU=yV|zXHDMapKWzy=0ScalarL
28 11 27 eqtr3d φyBaseU|zXy𝑖Uz=0ScalarU=yV|zXHDMapKWzy=0ScalarL
29 8 9 sseqtrd φXBaseU
30 eqid BaseU=BaseU
31 eqid 0ScalarU=0ScalarU
32 30 14 20 31 7 ocvval XBaseUOX=yBaseU|zXy𝑖Uz=0ScalarU
33 29 32 syl φOX=yBaseU|zXy𝑖Uz=0ScalarU
34 1 2 5 19 21 6 12 4 8 hdmapoc φNX=yV|zXHDMapKWzy=0ScalarL
35 28 33 34 3eqtr4d φOX=NX