| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhil0.h |  | 
						
							| 2 |  | hlhil0.l |  | 
						
							| 3 |  | hlhil0.u |  | 
						
							| 4 |  | hlhil0.k |  | 
						
							| 5 |  | hlhilocv.v |  | 
						
							| 6 |  | hlhilocv.n |  | 
						
							| 7 |  | hlhilocv.o |  | 
						
							| 8 |  | hlhilocv.x |  | 
						
							| 9 | 1 3 4 2 5 | hlhilbase |  | 
						
							| 10 |  | rabeq |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 4 | ad2antrr |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 |  | simplr |  | 
						
							| 16 | 8 | adantr |  | 
						
							| 17 | 16 | sselda |  | 
						
							| 18 | 1 2 5 12 3 13 14 15 17 | hlhilipval |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 1 2 19 3 20 4 21 | hlhils0 |  | 
						
							| 23 | 22 | eqcomd |  | 
						
							| 24 | 23 | ad2antrr |  | 
						
							| 25 | 18 24 | eqeq12d |  | 
						
							| 26 | 25 | ralbidva |  | 
						
							| 27 | 26 | rabbidva |  | 
						
							| 28 | 11 27 | eqtr3d |  | 
						
							| 29 | 8 9 | sseqtrd |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 30 14 20 31 7 | ocvval |  | 
						
							| 33 | 29 32 | syl |  | 
						
							| 34 | 1 2 5 19 21 6 12 4 8 | hdmapoc |  | 
						
							| 35 | 28 33 34 | 3eqtr4d |  |