| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmphdis.1 |
|
| 2 |
|
dfsn2 |
|
| 3 |
|
indislem |
|
| 4 |
|
preq2 |
|
| 5 |
4 2
|
eqtr4di |
|
| 6 |
3 5
|
eqtr3id |
|
| 7 |
6
|
breq2d |
|
| 8 |
7
|
biimpac |
|
| 9 |
|
hmph0 |
|
| 10 |
8 9
|
sylib |
|
| 11 |
10
|
unieqd |
|
| 12 |
|
0ex |
|
| 13 |
12
|
unisn |
|
| 14 |
13
|
eqcomi |
|
| 15 |
11 1 14
|
3eqtr4g |
|
| 16 |
15
|
preq2d |
|
| 17 |
2 10 16
|
3eqtr4a |
|
| 18 |
|
hmphen |
|
| 19 |
|
necom |
|
| 20 |
|
fvex |
|
| 21 |
|
enpr2 |
|
| 22 |
12 20 21
|
mp3an12 |
|
| 23 |
19 22
|
sylbi |
|
| 24 |
23
|
adantl |
|
| 25 |
3 24
|
eqbrtrrid |
|
| 26 |
|
entr |
|
| 27 |
18 25 26
|
syl2an2r |
|
| 28 |
|
hmphtop1 |
|
| 29 |
28
|
adantr |
|
| 30 |
1
|
toptopon |
|
| 31 |
29 30
|
sylib |
|
| 32 |
|
en2top |
|
| 33 |
31 32
|
syl |
|
| 34 |
27 33
|
mpbid |
|
| 35 |
34
|
simpld |
|
| 36 |
17 35
|
pm2.61dane |
|