Metamath Proof Explorer


Theorem hmphindis

Description: Homeomorphisms preserve topological indiscreteness. (Contributed by FL, 18-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis hmphdis.1 X=J
Assertion hmphindis JAJ=X

Proof

Step Hyp Ref Expression
1 hmphdis.1 X=J
2 dfsn2 =
3 indislem IA=A
4 preq2 IA=IA=
5 4 2 eqtr4di IA=IA=
6 3 5 eqtr3id IA=A=
7 6 breq2d IA=JAJ
8 7 biimpac JAIA=J
9 hmph0 JJ=
10 8 9 sylib JAIA=J=
11 10 unieqd JAIA=J=
12 0ex V
13 12 unisn =
14 13 eqcomi =
15 11 1 14 3eqtr4g JAIA=X=
16 15 preq2d JAIA=X=
17 2 10 16 3eqtr4a JAIA=J=X
18 hmphen JAJA
19 necom IAIA
20 fvex IAV
21 enpr2 VIAVIAIA2𝑜
22 12 20 21 mp3an12 IAIA2𝑜
23 19 22 sylbi IAIA2𝑜
24 23 adantl JAIAIA2𝑜
25 3 24 eqbrtrrid JAIAA2𝑜
26 entr JAA2𝑜J2𝑜
27 18 25 26 syl2an2r JAIAJ2𝑜
28 hmphtop1 JAJTop
29 28 adantr JAIAJTop
30 1 toptopon JTopJTopOnX
31 29 30 sylib JAIAJTopOnX
32 en2top JTopOnXJ2𝑜J=XX
33 31 32 syl JAIAJ2𝑜J=XX
34 27 33 mpbid JAIAJ=XX
35 34 simpld JAIAJ=X
36 17 35 pm2.61dane JAJ=X