Description: Homeomorphisms preserve topological indiscreteness. (Contributed by FL, 18-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hmphdis.1 | |
|
Assertion | hmphindis | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmphdis.1 | |
|
2 | dfsn2 | |
|
3 | indislem | |
|
4 | preq2 | |
|
5 | 4 2 | eqtr4di | |
6 | 3 5 | eqtr3id | |
7 | 6 | breq2d | |
8 | 7 | biimpac | |
9 | hmph0 | |
|
10 | 8 9 | sylib | |
11 | 10 | unieqd | |
12 | 0ex | |
|
13 | 12 | unisn | |
14 | 13 | eqcomi | |
15 | 11 1 14 | 3eqtr4g | |
16 | 15 | preq2d | |
17 | 2 10 16 | 3eqtr4a | |
18 | hmphen | |
|
19 | necom | |
|
20 | fvex | |
|
21 | enpr2 | |
|
22 | 12 20 21 | mp3an12 | |
23 | 19 22 | sylbi | |
24 | 23 | adantl | |
25 | 3 24 | eqbrtrrid | |
26 | entr | |
|
27 | 18 25 26 | syl2an2r | |
28 | hmphtop1 | |
|
29 | 28 | adantr | |
30 | 1 | toptopon | |
31 | 29 30 | sylib | |
32 | en2top | |
|
33 | 31 32 | syl | |
34 | 27 33 | mpbid | |
35 | 34 | simpld | |
36 | 17 35 | pm2.61dane | |