Step |
Hyp |
Ref |
Expression |
1 |
|
hofpropd.1 |
|
2 |
|
hofpropd.2 |
|
3 |
|
hofpropd.c |
|
4 |
|
hofpropd.d |
|
5 |
1
|
homfeqbas |
|
6 |
5
|
sqxpeqd |
|
7 |
6
|
adantr |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
1
|
adantr |
|
12 |
|
xp1st |
|
13 |
12
|
ad2antll |
|
14 |
|
xp1st |
|
15 |
14
|
ad2antrl |
|
16 |
8 9 10 11 13 15
|
homfeqval |
|
17 |
|
xp2nd |
|
18 |
17
|
ad2antrl |
|
19 |
|
xp2nd |
|
20 |
19
|
ad2antll |
|
21 |
8 9 10 11 18 20
|
homfeqval |
|
22 |
21
|
adantr |
|
23 |
8 9 10 11 15 18
|
homfeqval |
|
24 |
|
df-ov |
|
25 |
|
df-ov |
|
26 |
23 24 25
|
3eqtr3g |
|
27 |
|
1st2nd2 |
|
28 |
27
|
ad2antrl |
|
29 |
28
|
fveq2d |
|
30 |
28
|
fveq2d |
|
31 |
26 29 30
|
3eqtr4d |
|
32 |
31
|
adantr |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
11
|
ad2antrr |
|
36 |
2
|
ad3antrrr |
|
37 |
13
|
ad2antrr |
|
38 |
15
|
ad2antrr |
|
39 |
20
|
ad2antrr |
|
40 |
|
simplrl |
|
41 |
28
|
ad2antrr |
|
42 |
41
|
oveq1d |
|
43 |
42
|
oveqd |
|
44 |
3
|
ad3antrrr |
|
45 |
18
|
ad2antrr |
|
46 |
29
|
adantr |
|
47 |
46 24
|
eqtr4di |
|
48 |
47
|
eleq2d |
|
49 |
48
|
biimpa |
|
50 |
|
simplrr |
|
51 |
8 9 33 44 38 45 39 49 50
|
catcocl |
|
52 |
43 51
|
eqeltrd |
|
53 |
8 9 33 34 35 36 37 38 39 40 52
|
comfeqval |
|
54 |
8 9 33 34 35 36 38 45 39 49 50
|
comfeqval |
|
55 |
41
|
oveq1d |
|
56 |
55
|
oveqd |
|
57 |
54 43 56
|
3eqtr4d |
|
58 |
57
|
oveq1d |
|
59 |
53 58
|
eqtrd |
|
60 |
32 59
|
mpteq12dva |
|
61 |
16 22 60
|
mpoeq123dva |
|
62 |
6 7 61
|
mpoeq123dva |
|
63 |
1 62
|
opeq12d |
|
64 |
|
eqid |
|
65 |
64 3 8 9 33
|
hofval |
|
66 |
|
eqid |
|
67 |
|
eqid |
|
68 |
66 4 67 10 34
|
hofval |
|
69 |
63 65 68
|
3eqtr4d |
|