Metamath Proof Explorer


Theorem hoiprodp1

Description: The dimensional volume of a half-open interval with dimension n + 1 . Used in the first equality of step (e) of Lemma 115B of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoiprodp1.l L=xFinax,bxifx=0kxvolakbk
hoiprodp1.y φYFin
hoiprodp1.3 φZV
hoiprodp1.z φ¬ZY
hoiprodp1.x X=YZ
hoiprodp1.a φA:X
hoiprodp1.b φB:X
hoiprodp1.g G=kYvolAkBk
Assertion hoiprodp1 φALXB=GvolAZBZ

Proof

Step Hyp Ref Expression
1 hoiprodp1.l L=xFinax,bxifx=0kxvolakbk
2 hoiprodp1.y φYFin
3 hoiprodp1.3 φZV
4 hoiprodp1.z φ¬ZY
5 hoiprodp1.x X=YZ
6 hoiprodp1.a φA:X
7 hoiprodp1.b φB:X
8 hoiprodp1.g G=kYvolAkBk
9 snfi ZFin
10 9 a1i φZFin
11 unfi YFinZFinYZFin
12 2 10 11 syl2anc φYZFin
13 5 12 eqeltrid φXFin
14 snidg ZVZZ
15 3 14 syl φZZ
16 elun2 ZZZYZ
17 15 16 syl φZYZ
18 17 5 eleqtrrdi φZX
19 18 ne0d φX
20 1 13 19 6 7 hoidmvn0val φALXB=kXvolAkBk
21 6 ffvelcdmda φkXAk
22 7 ffvelcdmda φkXBk
23 volicore AkBkvolAkBk
24 21 22 23 syl2anc φkXvolAkBk
25 24 recnd φkXvolAkBk
26 fveq2 k=ZAk=AZ
27 fveq2 k=ZBk=BZ
28 26 27 oveq12d k=ZAkBk=AZBZ
29 28 fveq2d k=ZvolAkBk=volAZBZ
30 29 adantl φk=ZvolAkBk=volAZBZ
31 13 25 18 30 fprodsplit1 φkXvolAkBk=volAZBZkXZvolAkBk
32 5 difeq1i XZ=YZZ
33 32 a1i φXZ=YZZ
34 difun2 YZZ=YZ
35 34 a1i φYZZ=YZ
36 difsn ¬ZYYZ=Y
37 4 36 syl φYZ=Y
38 33 35 37 3eqtrd φXZ=Y
39 38 prodeq1d φkXZvolAkBk=kYvolAkBk
40 8 eqcomi kYvolAkBk=G
41 40 a1i φkYvolAkBk=G
42 39 41 eqtrd φkXZvolAkBk=G
43 42 oveq2d φvolAZBZkXZvolAkBk=volAZBZG
44 6 18 ffvelcdmd φAZ
45 7 18 ffvelcdmd φBZ
46 volicore AZBZvolAZBZ
47 44 45 46 syl2anc φvolAZBZ
48 47 recnd φvolAZBZ
49 6 adantr φkYA:X
50 ssun1 YYZ
51 50 5 sseqtrri YX
52 id kYkY
53 51 52 sselid kYkX
54 53 adantl φkYkX
55 49 54 ffvelcdmd φkYAk
56 7 adantr φkYB:X
57 56 54 ffvelcdmd φkYBk
58 55 57 23 syl2anc φkYvolAkBk
59 2 58 fprodrecl φkYvolAkBk
60 8 59 eqeltrid φG
61 60 recnd φG
62 48 61 mulcomd φvolAZBZG=GvolAZBZ
63 43 62 eqtrd φvolAZBZkXZvolAkBk=GvolAZBZ
64 20 31 63 3eqtrd φALXB=GvolAZBZ