| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiprodp1.l |  | 
						
							| 2 |  | hoiprodp1.y |  | 
						
							| 3 |  | hoiprodp1.3 |  | 
						
							| 4 |  | hoiprodp1.z |  | 
						
							| 5 |  | hoiprodp1.x |  | 
						
							| 6 |  | hoiprodp1.a |  | 
						
							| 7 |  | hoiprodp1.b |  | 
						
							| 8 |  | hoiprodp1.g |  | 
						
							| 9 |  | snfi |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | unfi |  | 
						
							| 12 | 2 10 11 | syl2anc |  | 
						
							| 13 | 5 12 | eqeltrid |  | 
						
							| 14 |  | snidg |  | 
						
							| 15 | 3 14 | syl |  | 
						
							| 16 |  | elun2 |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 17 5 | eleqtrrdi |  | 
						
							| 19 | 18 | ne0d |  | 
						
							| 20 | 1 13 19 6 7 | hoidmvn0val |  | 
						
							| 21 | 6 | ffvelcdmda |  | 
						
							| 22 | 7 | ffvelcdmda |  | 
						
							| 23 |  | volicore |  | 
						
							| 24 | 21 22 23 | syl2anc |  | 
						
							| 25 | 24 | recnd |  | 
						
							| 26 |  | fveq2 |  | 
						
							| 27 |  | fveq2 |  | 
						
							| 28 | 26 27 | oveq12d |  | 
						
							| 29 | 28 | fveq2d |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 | 13 25 18 30 | fprodsplit1 |  | 
						
							| 32 | 5 | difeq1i |  | 
						
							| 33 | 32 | a1i |  | 
						
							| 34 |  | difun2 |  | 
						
							| 35 | 34 | a1i |  | 
						
							| 36 |  | difsn |  | 
						
							| 37 | 4 36 | syl |  | 
						
							| 38 | 33 35 37 | 3eqtrd |  | 
						
							| 39 | 38 | prodeq1d |  | 
						
							| 40 | 8 | eqcomi |  | 
						
							| 41 | 40 | a1i |  | 
						
							| 42 | 39 41 | eqtrd |  | 
						
							| 43 | 42 | oveq2d |  | 
						
							| 44 | 6 18 | ffvelcdmd |  | 
						
							| 45 | 7 18 | ffvelcdmd |  | 
						
							| 46 |  | volicore |  | 
						
							| 47 | 44 45 46 | syl2anc |  | 
						
							| 48 | 47 | recnd |  | 
						
							| 49 | 6 | adantr |  | 
						
							| 50 |  | ssun1 |  | 
						
							| 51 | 50 5 | sseqtrri |  | 
						
							| 52 |  | id |  | 
						
							| 53 | 51 52 | sselid |  | 
						
							| 54 | 53 | adantl |  | 
						
							| 55 | 49 54 | ffvelcdmd |  | 
						
							| 56 | 7 | adantr |  | 
						
							| 57 | 56 54 | ffvelcdmd |  | 
						
							| 58 | 55 57 23 | syl2anc |  | 
						
							| 59 | 2 58 | fprodrecl |  | 
						
							| 60 | 8 59 | eqeltrid |  | 
						
							| 61 | 60 | recnd |  | 
						
							| 62 | 48 61 | mulcomd |  | 
						
							| 63 | 43 62 | eqtrd |  | 
						
							| 64 | 20 31 63 | 3eqtrd |  |