Description: ( 0 [,) A ) is open in II . (Contributed by Zhi Wang, 9-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | i0oii | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandi3r | |
|
2 | rexr | |
|
3 | lerelxr | |
|
4 | 3 | brel | |
5 | 4 | simpld | |
6 | 1xr | |
|
7 | xrltletr | |
|
8 | xrltle | |
|
9 | 8 | 3adant2 | |
10 | 7 9 | syld | |
11 | 6 10 | mp3an3 | |
12 | 2 5 11 | syl2an | |
13 | 12 | imp | |
14 | 1 13 | sylbi | |
15 | 14 | 3com12 | |
16 | 15 | 3expib | |
17 | 16 | pm4.71d | |
18 | 17 | anbi1d | |
19 | 3anan32 | |
|
20 | 3anass | |
|
21 | 20 | anbi2i | |
22 | anandi | |
|
23 | 3anass | |
|
24 | 3anan32 | |
|
25 | anass | |
|
26 | 23 24 25 | 3bitr3ri | |
27 | 21 22 26 | 3bitr2i | |
28 | 18 19 27 | 3bitr4g | |
29 | 0re | |
|
30 | elico2 | |
|
31 | 29 5 30 | sylancr | |
32 | elin | |
|
33 | elicc01 | |
|
34 | 33 | anbi2i | |
35 | 32 34 | bitri | |
36 | elioomnf | |
|
37 | 5 36 | syl | |
38 | 37 | anbi1d | |
39 | 35 38 | bitrid | |
40 | 28 31 39 | 3bitr4rd | |
41 | 40 | eqrdv | |
42 | fvex | |
|
43 | ovex | |
|
44 | iooretop | |
|
45 | elrestr | |
|
46 | 42 43 44 45 | mp3an | |
47 | dfii2 | |
|
48 | 46 47 | eleqtrri | |
49 | 41 48 | eqeltrrdi | |