Metamath Proof Explorer


Theorem i0oii

Description: ( 0 [,) A ) is open in II . (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Assertion i0oii A10AII

Proof

Step Hyp Ref Expression
1 anandi3r xA1x<AxA1x<AA1
2 rexr xx*
3 lerelxr *×*
4 3 brel A1A*1*
5 4 simpld A1A*
6 1xr 1*
7 xrltletr x*A*1*x<AA1x<1
8 xrltle x*1*x<1x1
9 8 3adant2 x*A*1*x<1x1
10 7 9 syld x*A*1*x<AA1x1
11 6 10 mp3an3 x*A*x<AA1x1
12 2 5 11 syl2an xA1x<AA1x1
13 12 imp xA1x<AA1x1
14 1 13 sylbi xA1x<Ax1
15 14 3com12 A1xx<Ax1
16 15 3expib A1xx<Ax1
17 16 pm4.71d A1xx<Axx<Ax1
18 17 anbi1d A1xx<A0xxx<Ax10x
19 3anan32 x0xx<Axx<A0x
20 3anass x0xx1x0xx1
21 20 anbi2i xx<Ax0xx1xx<Ax0xx1
22 anandi xx<A0xx1xx<Ax0xx1
23 3anass xx<A0xx1xx<A0xx1
24 3anan32 xx<A0xx1xx<Ax10x
25 anass xx<A0xx1xx<A0xx1
26 23 24 25 3bitr3ri xx<A0xx1xx<Ax10x
27 21 22 26 3bitr2i xx<Ax0xx1xx<Ax10x
28 18 19 27 3bitr4g A1x0xx<Axx<Ax0xx1
29 0re 0
30 elico2 0A*x0Ax0xx<A
31 29 5 30 sylancr A1x0Ax0xx<A
32 elin x−∞A01x−∞Ax01
33 elicc01 x01x0xx1
34 33 anbi2i x−∞Ax01x−∞Ax0xx1
35 32 34 bitri x−∞A01x−∞Ax0xx1
36 elioomnf A*x−∞Axx<A
37 5 36 syl A1x−∞Axx<A
38 37 anbi1d A1x−∞Ax0xx1xx<Ax0xx1
39 35 38 bitrid A1x−∞A01xx<Ax0xx1
40 28 31 39 3bitr4rd A1x−∞A01x0A
41 40 eqrdv A1−∞A01=0A
42 fvex topGenran.V
43 ovex 01V
44 iooretop −∞AtopGenran.
45 elrestr topGenran.V01V−∞AtopGenran.−∞A01topGenran.𝑡01
46 42 43 44 45 mp3an −∞A01topGenran.𝑡01
47 dfii2 II=topGenran.𝑡01
48 46 47 eleqtrri −∞A01II
49 41 48 eqeltrrdi A10AII