Metamath Proof Explorer


Theorem i1f1

Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Hypothesis i1f1.1 F=xifxA10
Assertion i1f1 AdomvolvolAFdom1

Proof

Step Hyp Ref Expression
1 i1f1.1 F=xifxA10
2 1 i1f1lem F:01AdomvolF-11=A
3 2 simpli F:01
4 0re 0
5 1re 1
6 prssi 0101
7 4 5 6 mp2an 01
8 fss F:0101F:
9 3 7 8 mp2an F:
10 9 a1i AdomvolvolAF:
11 prfi 01Fin
12 1ex 1V
13 12 prid2 101
14 c0ex 0V
15 14 prid1 001
16 13 15 ifcli ifxA1001
17 16 a1i AdomvolvolAxifxA1001
18 17 1 fmptd AdomvolvolAF:01
19 frn F:01ranF01
20 18 19 syl AdomvolvolAranF01
21 ssfi 01FinranF01ranFFin
22 11 20 21 sylancr AdomvolvolAranFFin
23 3 19 ax-mp ranF01
24 df-pr 01=01
25 24 equncomi 01=10
26 23 25 sseqtri ranF10
27 ssdif ranF10ranF0100
28 26 27 ax-mp ranF0100
29 difun2 100=10
30 difss 101
31 29 30 eqsstri 1001
32 28 31 sstri ranF01
33 32 sseli yranF0y1
34 elsni y1y=1
35 33 34 syl yranF0y=1
36 35 sneqd yranF0y=1
37 36 imaeq2d yranF0F-1y=F-11
38 2 simpri AdomvolF-11=A
39 38 adantr AdomvolvolAF-11=A
40 37 39 sylan9eqr AdomvolvolAyranF0F-1y=A
41 simpll AdomvolvolAyranF0Adomvol
42 40 41 eqeltrd AdomvolvolAyranF0F-1ydomvol
43 40 fveq2d AdomvolvolAyranF0volF-1y=volA
44 simplr AdomvolvolAyranF0volA
45 43 44 eqeltrd AdomvolvolAyranF0volF-1y
46 10 22 42 45 i1fd AdomvolvolAFdom1