Metamath Proof Explorer


Theorem i1fmulclem

Description: Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses i1fmulc.2 φFdom1
i1fmulc.3 φA
Assertion i1fmulclem φA0B×A×fF-1B=F-1BA

Proof

Step Hyp Ref Expression
1 i1fmulc.2 φFdom1
2 i1fmulc.3 φA
3 reex V
4 3 a1i φV
5 i1ff Fdom1F:
6 1 5 syl φF:
7 6 ffnd φFFn
8 eqidd φzFz=Fz
9 4 2 7 8 ofc1 φz×A×fFz=AFz
10 9 ad4ant14 φA0Bz×A×fFz=AFz
11 10 eqeq1d φA0Bz×A×fFz=BAFz=B
12 eqcom Fz=BABA=Fz
13 simplr φA0BzB
14 13 recnd φA0BzB
15 2 ad3antrrr φA0BzA
16 15 recnd φA0BzA
17 6 ad2antrr φA0BF:
18 17 ffvelcdmda φA0BzFz
19 18 recnd φA0BzFz
20 simpllr φA0BzA0
21 14 16 19 20 divmuld φA0BzBA=FzAFz=B
22 12 21 bitrid φA0BzFz=BAAFz=B
23 11 22 bitr4d φA0Bz×A×fFz=BFz=BA
24 23 pm5.32da φA0Bz×A×fFz=BzFz=BA
25 remulcl xyxy
26 25 adantl φxyxy
27 fconstg A×A:A
28 2 27 syl φ×A:A
29 2 snssd φA
30 28 29 fssd φ×A:
31 inidm =
32 26 30 6 4 4 31 off φ×A×fF:
33 32 ad2antrr φA0B×A×fF:
34 33 ffnd φA0B×A×fFFn
35 fniniseg ×A×fFFnz×A×fF-1Bz×A×fFz=B
36 34 35 syl φA0Bz×A×fF-1Bz×A×fFz=B
37 17 ffnd φA0BFFn
38 fniniseg FFnzF-1BAzFz=BA
39 37 38 syl φA0BzF-1BAzFz=BA
40 24 36 39 3bitr4d φA0Bz×A×fF-1BzF-1BA
41 40 eqrdv φA0B×A×fF-1B=F-1BA