Metamath Proof Explorer


Theorem iblcnlem1

Description: Lemma for iblcnlem . (Contributed by Mario Carneiro, 6-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses itgcnlem.r R = 2 x if x A 0 B B 0
itgcnlem.s S = 2 x if x A 0 B B 0
itgcnlem.t T = 2 x if x A 0 B B 0
itgcnlem.u U = 2 x if x A 0 B B 0
itgcnlem1.v φ x A B
Assertion iblcnlem1 φ x A B 𝐿 1 x A B MblFn R S T U

Proof

Step Hyp Ref Expression
1 itgcnlem.r R = 2 x if x A 0 B B 0
2 itgcnlem.s S = 2 x if x A 0 B B 0
3 itgcnlem.t T = 2 x if x A 0 B B 0
4 itgcnlem.u U = 2 x if x A 0 B B 0
5 itgcnlem1.v φ x A B
6 eqidd φ x if x A 0 B i k B i k 0 = x if x A 0 B i k B i k 0
7 eqidd φ x A B i k = B i k
8 6 7 5 isibl2 φ x A B 𝐿 1 x A B MblFn k 0 3 2 x if x A 0 B i k B i k 0
9 c0ex 0 V
10 1ex 1 V
11 ax-icn i
12 exp0 i i 0 = 1
13 11 12 ax-mp i 0 = 1
14 13 itgvallem k = 0 2 x if x A 0 B i k B i k 0 = 2 x if x A 0 B 1 B 1 0
15 14 eleq1d k = 0 2 x if x A 0 B i k B i k 0 2 x if x A 0 B 1 B 1 0
16 exp1 i i 1 = i
17 11 16 ax-mp i 1 = i
18 17 itgvallem k = 1 2 x if x A 0 B i k B i k 0 = 2 x if x A 0 B i B i 0
19 18 eleq1d k = 1 2 x if x A 0 B i k B i k 0 2 x if x A 0 B i B i 0
20 9 10 15 19 ralpr k 0 1 2 x if x A 0 B i k B i k 0 2 x if x A 0 B 1 B 1 0 2 x if x A 0 B i B i 0
21 5 div1d φ x A B 1 = B
22 21 fveq2d φ x A B 1 = B
23 22 ibllem φ if x A 0 B 1 B 1 0 = if x A 0 B B 0
24 23 mpteq2dv φ x if x A 0 B 1 B 1 0 = x if x A 0 B B 0
25 24 fveq2d φ 2 x if x A 0 B 1 B 1 0 = 2 x if x A 0 B B 0
26 25 1 eqtr4di φ 2 x if x A 0 B 1 B 1 0 = R
27 26 eleq1d φ 2 x if x A 0 B 1 B 1 0 R
28 imval B B = B i
29 5 28 syl φ x A B = B i
30 29 ibllem φ if x A 0 B B 0 = if x A 0 B i B i 0
31 30 mpteq2dv φ x if x A 0 B B 0 = x if x A 0 B i B i 0
32 31 fveq2d φ 2 x if x A 0 B B 0 = 2 x if x A 0 B i B i 0
33 3 32 eqtr2id φ 2 x if x A 0 B i B i 0 = T
34 33 eleq1d φ 2 x if x A 0 B i B i 0 T
35 27 34 anbi12d φ 2 x if x A 0 B 1 B 1 0 2 x if x A 0 B i B i 0 R T
36 20 35 syl5bb φ k 0 1 2 x if x A 0 B i k B i k 0 R T
37 2ex 2 V
38 3ex 3 V
39 i2 i 2 = 1
40 39 itgvallem k = 2 2 x if x A 0 B i k B i k 0 = 2 x if x A 0 B 1 B 1 0
41 40 eleq1d k = 2 2 x if x A 0 B i k B i k 0 2 x if x A 0 B 1 B 1 0
42 i3 i 3 = i
43 42 itgvallem k = 3 2 x if x A 0 B i k B i k 0 = 2 x if x A 0 B i B i 0
44 43 eleq1d k = 3 2 x if x A 0 B i k B i k 0 2 x if x A 0 B i B i 0
45 37 38 41 44 ralpr k 2 3 2 x if x A 0 B i k B i k 0 2 x if x A 0 B 1 B 1 0 2 x if x A 0 B i B i 0
46 5 renegd φ x A B = B
47 ax-1cn 1
48 47 negnegi -1 = 1
49 48 oveq2i B -1 = B 1
50 5 negcld φ x A B
51 50 div1d φ x A B 1 = B
52 49 51 eqtrid φ x A B -1 = B
53 47 negcli 1
54 neg1ne0 1 0
55 div2neg B 1 1 0 B -1 = B 1
56 53 54 55 mp3an23 B B -1 = B 1
57 5 56 syl φ x A B -1 = B 1
58 52 57 eqtr3d φ x A B = B 1
59 58 fveq2d φ x A B = B 1
60 46 59 eqtr3d φ x A B = B 1
61 60 ibllem φ if x A 0 B B 0 = if x A 0 B 1 B 1 0
62 61 mpteq2dv φ x if x A 0 B B 0 = x if x A 0 B 1 B 1 0
63 62 fveq2d φ 2 x if x A 0 B B 0 = 2 x if x A 0 B 1 B 1 0
64 2 63 eqtr2id φ 2 x if x A 0 B 1 B 1 0 = S
65 64 eleq1d φ 2 x if x A 0 B 1 B 1 0 S
66 imval B B = B i
67 50 66 syl φ x A B = B i
68 5 imnegd φ x A B = B
69 11 negnegi i = i
70 69 eqcomi i = i
71 70 oveq2i B i = B i
72 11 negcli i
73 ine0 i 0
74 11 73 negne0i i 0
75 div2neg B i i 0 B i = B i
76 72 74 75 mp3an23 B B i = B i
77 5 76 syl φ x A B i = B i
78 71 77 eqtrid φ x A B i = B i
79 78 fveq2d φ x A B i = B i
80 67 68 79 3eqtr3d φ x A B = B i
81 80 ibllem φ if x A 0 B B 0 = if x A 0 B i B i 0
82 81 mpteq2dv φ x if x A 0 B B 0 = x if x A 0 B i B i 0
83 82 fveq2d φ 2 x if x A 0 B B 0 = 2 x if x A 0 B i B i 0
84 4 83 eqtr2id φ 2 x if x A 0 B i B i 0 = U
85 84 eleq1d φ 2 x if x A 0 B i B i 0 U
86 65 85 anbi12d φ 2 x if x A 0 B 1 B 1 0 2 x if x A 0 B i B i 0 S U
87 45 86 syl5bb φ k 2 3 2 x if x A 0 B i k B i k 0 S U
88 36 87 anbi12d φ k 0 1 2 x if x A 0 B i k B i k 0 k 2 3 2 x if x A 0 B i k B i k 0 R T S U
89 fz0to3un2pr 0 3 = 0 1 2 3
90 89 raleqi k 0 3 2 x if x A 0 B i k B i k 0 k 0 1 2 3 2 x if x A 0 B i k B i k 0
91 ralunb k 0 1 2 3 2 x if x A 0 B i k B i k 0 k 0 1 2 x if x A 0 B i k B i k 0 k 2 3 2 x if x A 0 B i k B i k 0
92 90 91 bitri k 0 3 2 x if x A 0 B i k B i k 0 k 0 1 2 x if x A 0 B i k B i k 0 k 2 3 2 x if x A 0 B i k B i k 0
93 an4 R S T U R T S U
94 88 92 93 3bitr4g φ k 0 3 2 x if x A 0 B i k B i k 0 R S T U
95 94 anbi2d φ x A B MblFn k 0 3 2 x if x A 0 B i k B i k 0 x A B MblFn R S T U
96 3anass x A B MblFn R S T U x A B MblFn R S T U
97 95 96 bitr4di φ x A B MblFn k 0 3 2 x if x A 0 B i k B i k 0 x A B MblFn R S T U
98 8 97 bitrd φ x A B 𝐿 1 x A B MblFn R S T U