Metamath Proof Explorer


Theorem iccbnd

Description: A closed interval in RR is bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses iccbnd.1 J=AB
iccbnd.2 M=absJ×J
Assertion iccbnd ABMBndJ

Proof

Step Hyp Ref Expression
1 iccbnd.1 J=AB
2 iccbnd.2 M=absJ×J
3 cnmet absMet
4 iccssre ABAB
5 1 4 eqsstrid ABJ
6 ax-resscn
7 5 6 sstrdi ABJ
8 metres2 absMetJabsJ×JMetJ
9 3 7 8 sylancr ABabsJ×JMetJ
10 2 9 eqeltrid ABMMetJ
11 resubcl BABA
12 11 ancoms ABBA
13 2 oveqi xMy=xabsJ×Jy
14 ovres xJyJxabsJ×Jy=xabsy
15 14 adantl ABxJyJxabsJ×Jy=xabsy
16 13 15 eqtrid ABxJyJxMy=xabsy
17 7 sselda ABxJx
18 7 sselda AByJy
19 17 18 anim12dan ABxJyJxy
20 eqid abs=abs
21 20 cnmetdval xyxabsy=xy
22 19 21 syl ABxJyJxabsy=xy
23 16 22 eqtrd ABxJyJxMy=xy
24 simprr ABxJyJyJ
25 24 1 eleqtrdi ABxJyJyAB
26 elicc2 AByAByAyyB
27 26 adantr ABxJyJyAByAyyB
28 25 27 mpbid ABxJyJyAyyB
29 28 simp1d ABxJyJy
30 12 adantr ABxJyJBA
31 resubcl yBAyBA
32 29 30 31 syl2anc ABxJyJyBA
33 simpll ABxJyJA
34 simprl ABxJyJxJ
35 34 1 eleqtrdi ABxJyJxAB
36 elicc2 ABxABxAxxB
37 36 adantr ABxJyJxABxAxxB
38 35 37 mpbid ABxJyJxAxxB
39 38 simp1d ABxJyJx
40 simplr ABxJyJB
41 28 simp3d ABxJyJyB
42 29 40 33 41 lesub1dd ABxJyJyABA
43 29 33 30 42 subled ABxJyJyBAA
44 38 simp2d ABxJyJAx
45 32 33 39 43 44 letrd ABxJyJyBAx
46 29 30 readdcld ABxJyJy+B-A
47 38 simp3d ABxJyJxB
48 28 simp2d ABxJyJAy
49 33 29 40 48 lesub2dd ABxJyJByBA
50 40 29 30 lesubadd2d ABxJyJByBABy+B-A
51 49 50 mpbid ABxJyJBy+B-A
52 39 40 46 47 51 letrd ABxJyJxy+B-A
53 39 29 30 absdifled ABxJyJxyBAyBAxxy+B-A
54 45 52 53 mpbir2and ABxJyJxyBA
55 23 54 eqbrtrd ABxJyJxMyBA
56 55 ralrimivva ABxJyJxMyBA
57 breq2 r=BAxMyrxMyBA
58 57 2ralbidv r=BAxJyJxMyrxJyJxMyBA
59 58 rspcev BAxJyJxMyBArxJyJxMyr
60 12 56 59 syl2anc ABrxJyJxMyr
61 isbnd3b MBndJMMetJrxJyJxMyr
62 10 60 61 sylanbrc ABMBndJ