Description: A closed interval in RR is bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 22-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iccbnd.1 | |
|
iccbnd.2 | |
||
Assertion | iccbnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccbnd.1 | |
|
2 | iccbnd.2 | |
|
3 | cnmet | |
|
4 | iccssre | |
|
5 | 1 4 | eqsstrid | |
6 | ax-resscn | |
|
7 | 5 6 | sstrdi | |
8 | metres2 | |
|
9 | 3 7 8 | sylancr | |
10 | 2 9 | eqeltrid | |
11 | resubcl | |
|
12 | 11 | ancoms | |
13 | 2 | oveqi | |
14 | ovres | |
|
15 | 14 | adantl | |
16 | 13 15 | eqtrid | |
17 | 7 | sselda | |
18 | 7 | sselda | |
19 | 17 18 | anim12dan | |
20 | eqid | |
|
21 | 20 | cnmetdval | |
22 | 19 21 | syl | |
23 | 16 22 | eqtrd | |
24 | simprr | |
|
25 | 24 1 | eleqtrdi | |
26 | elicc2 | |
|
27 | 26 | adantr | |
28 | 25 27 | mpbid | |
29 | 28 | simp1d | |
30 | 12 | adantr | |
31 | resubcl | |
|
32 | 29 30 31 | syl2anc | |
33 | simpll | |
|
34 | simprl | |
|
35 | 34 1 | eleqtrdi | |
36 | elicc2 | |
|
37 | 36 | adantr | |
38 | 35 37 | mpbid | |
39 | 38 | simp1d | |
40 | simplr | |
|
41 | 28 | simp3d | |
42 | 29 40 33 41 | lesub1dd | |
43 | 29 33 30 42 | subled | |
44 | 38 | simp2d | |
45 | 32 33 39 43 44 | letrd | |
46 | 29 30 | readdcld | |
47 | 38 | simp3d | |
48 | 28 | simp2d | |
49 | 33 29 40 48 | lesub2dd | |
50 | 40 29 30 | lesubadd2d | |
51 | 49 50 | mpbid | |
52 | 39 40 46 47 51 | letrd | |
53 | 39 29 30 | absdifled | |
54 | 45 52 53 | mpbir2and | |
55 | 23 54 | eqbrtrd | |
56 | 55 | ralrimivva | |
57 | breq2 | |
|
58 | 57 | 2ralbidv | |
59 | 58 | rspcev | |
60 | 12 56 59 | syl2anc | |
61 | isbnd3b | |
|
62 | 10 60 61 | sylanbrc | |