Metamath Proof Explorer


Theorem ichreuopeq

Description: If the setvar variables are interchangeable in a wff, and there is a unique ordered pair fulfilling the wff, then both setvar variables must be equal. (Contributed by AV, 28-Aug-2023)

Ref Expression
Assertion ichreuopeq abφ∃!pX×Xabp=abφaba=bφ

Proof

Step Hyp Ref Expression
1 eqeq1 p=xyp=abxy=ab
2 1 anbi1d p=xyp=abφxy=abφ
3 2 2exbidv p=xyabp=abφabxy=abφ
4 eqeq1 p=vwp=abvw=ab
5 4 anbi1d p=vwp=abφvw=abφ
6 5 2exbidv p=vwabp=abφabvw=abφ
7 3 6 reuop ∃!pX×Xabp=abφxXyXabxy=abφvXwXabvw=abφvw=xy
8 nfich1 aabφ
9 nfv axXyX
10 8 9 nfan aabφxXyX
11 nfcv _aX
12 nfe1 aabvw=abφ
13 nfv avw=xy
14 12 13 nfim aabvw=abφvw=xy
15 11 14 nfralw awXabvw=abφvw=xy
16 11 15 nfralw avXwXabvw=abφvw=xy
17 nfe1 aaba=bφ
18 16 17 nfim avXwXabvw=abφvw=xyaba=bφ
19 nfich2 babφ
20 nfv bxXyX
21 19 20 nfan babφxXyX
22 nfcv _bX
23 nfe1 bbvw=abφ
24 23 nfex babvw=abφ
25 nfv bvw=xy
26 24 25 nfim babvw=abφvw=xy
27 22 26 nfralw bwXabvw=abφvw=xy
28 22 27 nfralw bvXwXabvw=abφvw=xy
29 nfe1 bba=bφ
30 29 nfex baba=bφ
31 28 30 nfim bvXwXabvw=abφvw=xyaba=bφ
32 opeq12 v=yw=xvw=yx
33 32 eqeq1d v=yw=xvw=abyx=ab
34 33 anbi1d v=yw=xvw=abφyx=abφ
35 34 2exbidv v=yw=xabvw=abφabyx=abφ
36 32 eqeq1d v=yw=xvw=xyyx=xy
37 35 36 imbi12d v=yw=xabvw=abφvw=xyabyx=abφyx=xy
38 37 rspc2gv yXxXvXwXabvw=abφvw=xyabyx=abφyx=xy
39 38 ancoms xXyXvXwXabvw=abφvw=xyabyx=abφyx=xy
40 39 adantl abφxXyXvXwXabvw=abφvw=xyabyx=abφyx=xy
41 simprr abφxXyXyX
42 41 adantr abφxXyXxy=abφyX
43 simpl xXyXxX
44 43 adantl abφxXyXxX
45 44 adantr abφxXyXxy=abφxX
46 eqidd abφxXyXxy=abφyx=yx
47 vex xV
48 vex yV
49 47 48 opth xy=abx=ay=b
50 sbceq1a b=yφ[˙y/b]˙φ
51 50 equcoms y=bφ[˙y/b]˙φ
52 sbceq1a a=x[˙y/b]˙φ[˙x/a]˙[˙y/b]˙φ
53 52 equcoms x=a[˙y/b]˙φ[˙x/a]˙[˙y/b]˙φ
54 51 53 sylan9bbr x=ay=bφ[˙x/a]˙[˙y/b]˙φ
55 dfich2 abφxyxaybφyaxbφ
56 2sp xyxaybφyaxbφxaybφyaxbφ
57 sbsbc ybφ[˙y/b]˙φ
58 57 sbbii xaybφxa[˙y/b]˙φ
59 sbsbc xa[˙y/b]˙φ[˙x/a]˙[˙y/b]˙φ
60 58 59 bitri xaybφ[˙x/a]˙[˙y/b]˙φ
61 sbsbc xbφ[˙x/b]˙φ
62 61 sbbii yaxbφya[˙x/b]˙φ
63 sbsbc ya[˙x/b]˙φ[˙y/a]˙[˙x/b]˙φ
64 62 63 bitri yaxbφ[˙y/a]˙[˙x/b]˙φ
65 56 60 64 3bitr3g xyxaybφyaxbφ[˙x/a]˙[˙y/b]˙φ[˙y/a]˙[˙x/b]˙φ
66 55 65 sylbi abφ[˙x/a]˙[˙y/b]˙φ[˙y/a]˙[˙x/b]˙φ
67 66 biimpd abφ[˙x/a]˙[˙y/b]˙φ[˙y/a]˙[˙x/b]˙φ
68 67 adantr abφxXyX[˙x/a]˙[˙y/b]˙φ[˙y/a]˙[˙x/b]˙φ
69 68 com12 [˙x/a]˙[˙y/b]˙φabφxXyX[˙y/a]˙[˙x/b]˙φ
70 54 69 syl6bi x=ay=bφabφxXyX[˙y/a]˙[˙x/b]˙φ
71 49 70 sylbi xy=abφabφxXyX[˙y/a]˙[˙x/b]˙φ
72 71 imp xy=abφabφxXyX[˙y/a]˙[˙x/b]˙φ
73 72 impcom abφxXyXxy=abφ[˙y/a]˙[˙x/b]˙φ
74 sbccom [˙x/b]˙[˙y/a]˙φ[˙y/a]˙[˙x/b]˙φ
75 73 74 sylibr abφxXyXxy=abφ[˙x/b]˙[˙y/a]˙φ
76 46 75 jca abφxXyXxy=abφyx=yx[˙x/b]˙[˙y/a]˙φ
77 nfcv _bx
78 nfv byx=yx
79 nfsbc1v b[˙x/b]˙[˙y/a]˙φ
80 78 79 nfan byx=yx[˙x/b]˙[˙y/a]˙φ
81 opeq2 b=xyb=yx
82 81 eqeq2d b=xyx=ybyx=yx
83 sbceq1a b=x[˙y/a]˙φ[˙x/b]˙[˙y/a]˙φ
84 82 83 anbi12d b=xyx=yb[˙y/a]˙φyx=yx[˙x/b]˙[˙y/a]˙φ
85 77 80 84 spcegf xXyx=yx[˙x/b]˙[˙y/a]˙φbyx=yb[˙y/a]˙φ
86 45 76 85 sylc abφxXyXxy=abφbyx=yb[˙y/a]˙φ
87 nfcv _ay
88 nfv ayx=yb
89 nfsbc1v a[˙y/a]˙φ
90 88 89 nfan ayx=yb[˙y/a]˙φ
91 90 nfex abyx=yb[˙y/a]˙φ
92 opeq1 a=yab=yb
93 92 eqeq2d a=yyx=abyx=yb
94 sbceq1a a=yφ[˙y/a]˙φ
95 93 94 anbi12d a=yyx=abφyx=yb[˙y/a]˙φ
96 95 exbidv a=ybyx=abφbyx=yb[˙y/a]˙φ
97 87 91 96 spcegf yXbyx=yb[˙y/a]˙φabyx=abφ
98 42 86 97 sylc abφxXyXxy=abφabyx=abφ
99 simpl y=xx=ay=by=x
100 simprr y=xx=ay=by=b
101 simpl x=ay=bx=a
102 101 adantl y=xx=ay=bx=a
103 99 100 102 3eqtr3rd y=xx=ay=ba=b
104 103 anim1i y=xx=ay=bφa=bφ
105 104 exp31 y=xx=ay=bφa=bφ
106 49 105 biimtrid y=xxy=abφa=bφ
107 106 impd y=xxy=abφa=bφ
108 48 47 opth1 yx=xyy=x
109 107 108 syl11 xy=abφyx=xya=bφ
110 109 adantl abφxXyXxy=abφyx=xya=bφ
111 110 imp abφxXyXxy=abφyx=xya=bφ
112 111 19.8ad abφxXyXxy=abφyx=xyba=bφ
113 112 19.8ad abφxXyXxy=abφyx=xyaba=bφ
114 113 ex abφxXyXxy=abφyx=xyaba=bφ
115 98 114 embantd abφxXyXxy=abφabyx=abφyx=xyaba=bφ
116 115 ex abφxXyXxy=abφabyx=abφyx=xyaba=bφ
117 40 116 syl5d abφxXyXxy=abφvXwXabvw=abφvw=xyaba=bφ
118 21 31 117 exlimd abφxXyXbxy=abφvXwXabvw=abφvw=xyaba=bφ
119 10 18 118 exlimd abφxXyXabxy=abφvXwXabvw=abφvw=xyaba=bφ
120 119 impd abφxXyXabxy=abφvXwXabvw=abφvw=xyaba=bφ
121 120 rexlimdvva abφxXyXabxy=abφvXwXabvw=abφvw=xyaba=bφ
122 7 121 biimtrid abφ∃!pX×Xabp=abφaba=bφ