Metamath Proof Explorer


Theorem icoreunrn

Description: The union of all closed-below, open-above intervals of reals is the set of reals. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis icoreunrn.1 I = . 2
Assertion icoreunrn = I

Proof

Step Hyp Ref Expression
1 icoreunrn.1 I = . 2
2 rexr x x *
3 peano2re x x + 1
4 rexr x + 1 x + 1 *
5 3 4 syl x x + 1 *
6 ltp1 x x < x + 1
7 lbico1 x * x + 1 * x < x + 1 x x x + 1
8 2 5 6 7 syl3anc x x x x + 1
9 df-ov x x + 1 = . x x + 1
10 8 9 eleqtrdi x x . x x + 1
11 opelxpi x x + 1 x x + 1 2
12 3 11 mpdan x x x + 1 2
13 fvres x x + 1 2 . 2 x x + 1 = . x x + 1
14 12 13 syl x . 2 x x + 1 = . x x + 1
15 10 14 eleqtrrd x x . 2 x x + 1
16 icoreresf . 2 : 2 𝒫
17 16 fdmi dom . 2 = 2
18 11 17 eleqtrrdi x x + 1 x x + 1 dom . 2
19 3 18 mpdan x x x + 1 dom . 2
20 ffun . 2 : 2 𝒫 Fun . 2
21 16 20 ax-mp Fun . 2
22 fvelrn Fun . 2 x x + 1 dom . 2 . 2 x x + 1 ran . 2
23 21 22 mpan x x + 1 dom . 2 . 2 x x + 1 ran . 2
24 df-ima . 2 = ran . 2
25 1 24 eqtri I = ran . 2
26 23 25 eleqtrrdi x x + 1 dom . 2 . 2 x x + 1 I
27 19 26 syl x . 2 x x + 1 I
28 elunii x . 2 x x + 1 . 2 x x + 1 I x I
29 15 27 28 syl2anc x x I
30 29 ssriv I
31 frn . 2 : 2 𝒫 ran . 2 𝒫
32 16 31 ax-mp ran . 2 𝒫
33 25 32 eqsstri I 𝒫
34 uniss I 𝒫 I 𝒫
35 unipw 𝒫 =
36 34 35 sseqtrdi I 𝒫 I
37 33 36 ax-mp I
38 30 37 eqssi = I