Metamath Proof Explorer


Theorem icoreunrn

Description: The union of all closed-below, open-above intervals of reals is the set of reals. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis icoreunrn.1 I=.2
Assertion icoreunrn =I

Proof

Step Hyp Ref Expression
1 icoreunrn.1 I=.2
2 rexr xx*
3 peano2re xx+1
4 rexr x+1x+1*
5 3 4 syl xx+1*
6 ltp1 xx<x+1
7 lbico1 x*x+1*x<x+1xxx+1
8 2 5 6 7 syl3anc xxxx+1
9 df-ov xx+1=.xx+1
10 8 9 eleqtrdi xx.xx+1
11 opelxpi xx+1xx+12
12 3 11 mpdan xxx+12
13 fvres xx+12.2xx+1=.xx+1
14 12 13 syl x.2xx+1=.xx+1
15 10 14 eleqtrrd xx.2xx+1
16 icoreresf .2:2𝒫
17 16 fdmi dom.2=2
18 11 17 eleqtrrdi xx+1xx+1dom.2
19 3 18 mpdan xxx+1dom.2
20 ffun .2:2𝒫Fun.2
21 16 20 ax-mp Fun.2
22 fvelrn Fun.2xx+1dom.2.2xx+1ran.2
23 21 22 mpan xx+1dom.2.2xx+1ran.2
24 df-ima .2=ran.2
25 1 24 eqtri I=ran.2
26 23 25 eleqtrrdi xx+1dom.2.2xx+1I
27 19 26 syl x.2xx+1I
28 elunii x.2xx+1.2xx+1IxI
29 15 27 28 syl2anc xxI
30 29 ssriv I
31 frn .2:2𝒫ran.2𝒫
32 16 31 ax-mp ran.2𝒫
33 25 32 eqsstri I𝒫
34 uniss I𝒫I𝒫
35 unipw 𝒫=
36 34 35 sseqtrdi I𝒫I
37 33 36 ax-mp I
38 30 37 eqssi =I