Metamath Proof Explorer


Theorem idlimc

Description: Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses idlimc.a φ A
idlimc.f F = x A x
idlimc.x φ X
Assertion idlimc φ X F lim X

Proof

Step Hyp Ref Expression
1 idlimc.a φ A
2 idlimc.f F = x A x
3 idlimc.x φ X
4 simpr φ w + w +
5 simpr φ x A x A
6 2 fvmpt2 x A x A F x = x
7 5 5 6 syl2anc φ x A F x = x
8 7 fvoveq1d φ x A F x X = x X
9 8 adantr φ x A x X < w F x X = x X
10 simpr φ x A x X < w x X < w
11 9 10 eqbrtrd φ x A x X < w F x X < w
12 11 adantrl φ x A x X x X < w F x X < w
13 12 ex φ x A x X x X < w F x X < w
14 13 adantlr φ w + x A x X x X < w F x X < w
15 14 ralrimiva φ w + x A x X x X < w F x X < w
16 nfcv _ z x
17 nfcv _ z X
18 16 17 nfne z x X
19 nfv z x X < w
20 18 19 nfan z x X x X < w
21 nfv z F x X < w
22 20 21 nfim z x X x X < w F x X < w
23 nfv x z X z X < w
24 nfcv _ x abs
25 nfmpt1 _ x x A x
26 2 25 nfcxfr _ x F
27 nfcv _ x z
28 26 27 nffv _ x F z
29 nfcv _ x
30 nfcv _ x X
31 28 29 30 nfov _ x F z X
32 24 31 nffv _ x F z X
33 nfcv _ x <
34 nfcv _ x w
35 32 33 34 nfbr x F z X < w
36 23 35 nfim x z X z X < w F z X < w
37 neeq1 x = z x X z X
38 fvoveq1 x = z x X = z X
39 38 breq1d x = z x X < w z X < w
40 37 39 anbi12d x = z x X x X < w z X z X < w
41 40 imbrov2fvoveq x = z x X x X < w F x X < w z X z X < w F z X < w
42 22 36 41 cbvralw x A x X x X < w F x X < w z A z X z X < w F z X < w
43 15 42 sylib φ w + z A z X z X < w F z X < w
44 brimralrspcev w + z A z X z X < w F z X < w y + z A z X z X < y F z X < w
45 4 43 44 syl2anc φ w + y + z A z X z X < y F z X < w
46 45 ralrimiva φ w + y + z A z X z X < y F z X < w
47 1 sselda φ x A x
48 47 2 fmptd φ F : A
49 48 1 3 ellimc3 φ X F lim X X w + y + z A z X z X < y F z X < w
50 3 46 49 mpbir2and φ X F lim X