| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idomnnzpownz.1 |
|
| 2 |
|
idomnnzpownz.2 |
|
| 3 |
|
idomnnzpownz.3 |
|
| 4 |
|
idomnnzpownz.4 |
|
| 5 |
|
idomnnzpownz.5 |
|
| 6 |
4
|
ancli |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
neeq1d |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
neeq1d |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
neeq1d |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
neeq1d |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
15 16
|
mgpbas |
|
| 18 |
2 17
|
eleqtrdi |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
19 20 5
|
mulg0 |
|
| 22 |
18 21
|
syl |
|
| 23 |
|
eqid |
|
| 24 |
15 23
|
ringidval |
|
| 25 |
22 24
|
eqtr4di |
|
| 26 |
|
isidom |
|
| 27 |
26
|
simprbi |
|
| 28 |
|
domnnzr |
|
| 29 |
|
eqid |
|
| 30 |
23 29
|
nzrnz |
|
| 31 |
1 27 28 30
|
4syl |
|
| 32 |
25 31
|
eqnetrd |
|
| 33 |
1
|
idomringd |
|
| 34 |
15
|
ringmgp |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
adantr |
|
| 38 |
|
simplr |
|
| 39 |
18
|
ad2antrr |
|
| 40 |
|
eqid |
|
| 41 |
19 5 40
|
mulgnn0p1 |
|
| 42 |
37 38 39 41
|
syl3anc |
|
| 43 |
|
eqid |
|
| 44 |
15 43
|
mgpplusg |
|
| 45 |
44
|
a1i |
|
| 46 |
45
|
eqcomd |
|
| 47 |
46
|
oveqd |
|
| 48 |
1 27
|
syl |
|
| 49 |
48
|
adantr |
|
| 50 |
49
|
adantr |
|
| 51 |
19 5
|
mulgnn0cl |
|
| 52 |
37 38 39 51
|
syl3anc |
|
| 53 |
17
|
eqcomi |
|
| 54 |
53
|
a1i |
|
| 55 |
52 54
|
eleqtrd |
|
| 56 |
|
simpr |
|
| 57 |
55 56
|
jca |
|
| 58 |
2 3
|
jca |
|
| 59 |
58
|
adantr |
|
| 60 |
59
|
adantr |
|
| 61 |
16 43 29
|
domnmuln0 |
|
| 62 |
50 57 60 61
|
syl3anc |
|
| 63 |
47 62
|
eqnetrd |
|
| 64 |
42 63
|
eqnetrd |
|
| 65 |
8 10 12 14 32 64
|
nn0indd |
|
| 66 |
6 65
|
syl |
|