Metamath Proof Explorer


Theorem igenval

Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010) (Proof shortened by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypotheses igenval.1 G=1stR
igenval.2 X=ranG
Assertion igenval RRingOpsSXRIdlGenS=jIdlR|Sj

Proof

Step Hyp Ref Expression
1 igenval.1 G=1stR
2 igenval.2 X=ranG
3 1 2 rngoidl RRingOpsXIdlR
4 sseq2 j=XSjSX
5 4 rspcev XIdlRSXjIdlRSj
6 3 5 sylan RRingOpsSXjIdlRSj
7 rabn0 jIdlR|SjjIdlRSj
8 6 7 sylibr RRingOpsSXjIdlR|Sj
9 intex jIdlR|SjjIdlR|SjV
10 8 9 sylib RRingOpsSXjIdlR|SjV
11 1 fvexi GV
12 11 rnex ranGV
13 2 12 eqeltri XV
14 13 elpw2 S𝒫XSX
15 simpl r=Rs=Sr=R
16 15 fveq2d r=Rs=SIdlr=IdlR
17 sseq1 s=SsjSj
18 17 adantl r=Rs=SsjSj
19 16 18 rabeqbidv r=Rs=SjIdlr|sj=jIdlR|Sj
20 19 inteqd r=Rs=SjIdlr|sj=jIdlR|Sj
21 fveq2 r=R1str=1stR
22 21 1 eqtr4di r=R1str=G
23 22 rneqd r=Rran1str=ranG
24 23 2 eqtr4di r=Rran1str=X
25 24 pweqd r=R𝒫ran1str=𝒫X
26 df-igen IdlGen=rRingOps,s𝒫ran1strjIdlr|sj
27 20 25 26 ovmpox RRingOpsS𝒫XjIdlR|SjVRIdlGenS=jIdlR|Sj
28 14 27 syl3an2br RRingOpsSXjIdlR|SjVRIdlGenS=jIdlR|Sj
29 10 28 mpd3an3 RRingOpsSXRIdlGenS=jIdlR|Sj