Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010) (Proof shortened by Mario Carneiro, 20-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | igenval.1 | |
|
igenval.2 | |
||
Assertion | igenval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | igenval.1 | |
|
2 | igenval.2 | |
|
3 | 1 2 | rngoidl | |
4 | sseq2 | |
|
5 | 4 | rspcev | |
6 | 3 5 | sylan | |
7 | rabn0 | |
|
8 | 6 7 | sylibr | |
9 | intex | |
|
10 | 8 9 | sylib | |
11 | 1 | fvexi | |
12 | 11 | rnex | |
13 | 2 12 | eqeltri | |
14 | 13 | elpw2 | |
15 | simpl | |
|
16 | 15 | fveq2d | |
17 | sseq1 | |
|
18 | 17 | adantl | |
19 | 16 18 | rabeqbidv | |
20 | 19 | inteqd | |
21 | fveq2 | |
|
22 | 21 1 | eqtr4di | |
23 | 22 | rneqd | |
24 | 23 2 | eqtr4di | |
25 | 24 | pweqd | |
26 | df-igen | |
|
27 | 20 25 26 | ovmpox | |
28 | 14 27 | syl3an2br | |
29 | 10 28 | mpd3an3 | |