Metamath Proof Explorer


Theorem iinhoiicc

Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iunhoiicc.k kφ
iunhoiicc.a φkXA
iunhoiicc.b φkXB
Assertion iinhoiicc φnkXAB+1n=kXAB

Proof

Step Hyp Ref Expression
1 iunhoiicc.k kφ
2 iunhoiicc.a φkXA
3 iunhoiicc.b φkXB
4 oveq2 n=m1n=1m
5 4 oveq2d n=mB+1n=B+1m
6 5 oveq2d n=mAB+1n=AB+1m
7 6 ixpeq2dv n=mkXAB+1n=kXAB+1m
8 7 cbviinv nkXAB+1n=mkXAB+1m
9 8 eleq2i fnkXAB+1nfmkXAB+1m
10 9 biimpi fnkXAB+1nfmkXAB+1m
11 10 adantl φfnkXAB+1nfmkXAB+1m
12 nfcv _kf
13 nfcv _k
14 nfixp1 _kkXAB+1m
15 13 14 nfiin _kmkXAB+1m
16 12 15 nfel kfmkXAB+1m
17 1 16 nfan kφfmkXAB+1m
18 2 adantlr φfmkXAB+1mkXA
19 3 adantlr φfmkXAB+1mkXB
20 9 biimpri fmkXAB+1mfnkXAB+1n
21 20 adantl φfmkXAB+1mfnkXAB+1n
22 17 18 19 21 iinhoiicclem φfmkXAB+1mfkXAB
23 11 22 syldan φfnkXAB+1nfkXAB
24 23 ralrimiva φfnkXAB+1nfkXAB
25 dfss3 nkXAB+1nkXABfnkXAB+1nfkXAB
26 24 25 sylibr φnkXAB+1nkXAB
27 nfv kn
28 1 27 nfan kφn
29 2 rexrd φkXA*
30 29 adantlr φnkXA*
31 3 adantlr φnkXB
32 nnrp nn+
33 32 ad2antlr φnkXn+
34 33 rpreccld φnkX1n+
35 34 rpred φnkX1n
36 31 35 readdcld φnkXB+1n
37 36 rexrd φnkXB+1n*
38 2 adantlr φnkXA
39 38 leidd φnkXAA
40 31 34 ltaddrpd φnkXB<B+1n
41 iccssico A*B+1n*AAB<B+1nABAB+1n
42 30 37 39 40 41 syl22anc φnkXABAB+1n
43 28 42 ixpssixp φnkXABkXAB+1n
44 43 ralrimiva φnkXABkXAB+1n
45 ssiin kXABnkXAB+1nnkXABkXAB+1n
46 44 45 sylibr φkXABnkXAB+1n
47 26 46 eqssd φnkXAB+1n=kXAB