Metamath Proof Explorer


Theorem imacrhmcl

Description: The image of a commutative ring homomorphism is a commutative ring. (Contributed by SN, 10-Jan-2025)

Ref Expression
Hypotheses imacrhmcl.c C=N𝑠FS
imacrhmcl.h φFMRingHomN
imacrhmcl.m φMCRing
imacrhmcl.s φSSubRingM
Assertion imacrhmcl φCCRing

Proof

Step Hyp Ref Expression
1 imacrhmcl.c C=N𝑠FS
2 imacrhmcl.h φFMRingHomN
3 imacrhmcl.m φMCRing
4 imacrhmcl.s φSSubRingM
5 rhmima FMRingHomNSSubRingMFSSubRingN
6 2 4 5 syl2anc φFSSubRingN
7 1 subrgring FSSubRingNCRing
8 6 7 syl φCRing
9 1 ressbasss2 BaseCFS
10 9 sseli xBaseCxFS
11 9 sseli yBaseCyFS
12 10 11 anim12i xBaseCyBaseCxFSyFS
13 eqid BaseM=BaseM
14 eqid BaseN=BaseN
15 13 14 rhmf FMRingHomNF:BaseMBaseN
16 2 15 syl φF:BaseMBaseN
17 16 ffund φFunF
18 fvelima FunFxFSaSFa=x
19 17 18 sylan φxFSaSFa=x
20 19 adantrr φxFSyFSaSFa=x
21 fvelima FunFyFSbSFb=y
22 17 21 sylan φyFSbSFb=y
23 22 adantrl φxFSyFSbSFb=y
24 23 adantr φxFSyFSaSFa=xbSFb=y
25 3 ad3antrrr φxFSyFSaSFa=xbSFb=yMCRing
26 13 subrgss SSubRingMSBaseM
27 4 26 syl φSBaseM
28 27 ad3antrrr φxFSyFSaSFa=xbSFb=ySBaseM
29 simplrl φxFSyFSaSFa=xbSFb=yaS
30 28 29 sseldd φxFSyFSaSFa=xbSFb=yaBaseM
31 simprl φxFSyFSaSFa=xbSFb=ybS
32 28 31 sseldd φxFSyFSaSFa=xbSFb=ybBaseM
33 eqid M=M
34 13 33 crngcom MCRingaBaseMbBaseMaMb=bMa
35 25 30 32 34 syl3anc φxFSyFSaSFa=xbSFb=yaMb=bMa
36 35 fveq2d φxFSyFSaSFa=xbSFb=yFaMb=FbMa
37 2 ad3antrrr φxFSyFSaSFa=xbSFb=yFMRingHomN
38 eqid N=N
39 13 33 38 rhmmul FMRingHomNaBaseMbBaseMFaMb=FaNFb
40 37 30 32 39 syl3anc φxFSyFSaSFa=xbSFb=yFaMb=FaNFb
41 13 33 38 rhmmul FMRingHomNbBaseMaBaseMFbMa=FbNFa
42 37 32 30 41 syl3anc φxFSyFSaSFa=xbSFb=yFbMa=FbNFa
43 36 40 42 3eqtr3d φxFSyFSaSFa=xbSFb=yFaNFb=FbNFa
44 imaexg FMRingHomNFSV
45 1 38 ressmulr FSVN=C
46 2 44 45 3syl φN=C
47 46 ad3antrrr φxFSyFSaSFa=xbSFb=yN=C
48 simplrr φxFSyFSaSFa=xbSFb=yFa=x
49 simprr φxFSyFSaSFa=xbSFb=yFb=y
50 47 48 49 oveq123d φxFSyFSaSFa=xbSFb=yFaNFb=xCy
51 47 49 48 oveq123d φxFSyFSaSFa=xbSFb=yFbNFa=yCx
52 43 50 51 3eqtr3d φxFSyFSaSFa=xbSFb=yxCy=yCx
53 24 52 rexlimddv φxFSyFSaSFa=xxCy=yCx
54 20 53 rexlimddv φxFSyFSxCy=yCx
55 12 54 sylan2 φxBaseCyBaseCxCy=yCx
56 55 ralrimivva φxBaseCyBaseCxCy=yCx
57 eqid BaseC=BaseC
58 eqid C=C
59 57 58 iscrng2 CCRingCRingxBaseCyBaseCxCy=yCx
60 8 56 59 sylanbrc φCCRing