Description: The image of a commutative ring homomorphism is a commutative ring. (Contributed by SN, 10-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | imacrhmcl.c | |
|
imacrhmcl.h | |
||
imacrhmcl.m | |
||
imacrhmcl.s | |
||
Assertion | imacrhmcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imacrhmcl.c | |
|
2 | imacrhmcl.h | |
|
3 | imacrhmcl.m | |
|
4 | imacrhmcl.s | |
|
5 | rhmima | |
|
6 | 2 4 5 | syl2anc | |
7 | 1 | subrgring | |
8 | 6 7 | syl | |
9 | 1 | ressbasss2 | |
10 | 9 | sseli | |
11 | 9 | sseli | |
12 | 10 11 | anim12i | |
13 | eqid | |
|
14 | eqid | |
|
15 | 13 14 | rhmf | |
16 | 2 15 | syl | |
17 | 16 | ffund | |
18 | fvelima | |
|
19 | 17 18 | sylan | |
20 | 19 | adantrr | |
21 | fvelima | |
|
22 | 17 21 | sylan | |
23 | 22 | adantrl | |
24 | 23 | adantr | |
25 | 3 | ad3antrrr | |
26 | 13 | subrgss | |
27 | 4 26 | syl | |
28 | 27 | ad3antrrr | |
29 | simplrl | |
|
30 | 28 29 | sseldd | |
31 | simprl | |
|
32 | 28 31 | sseldd | |
33 | eqid | |
|
34 | 13 33 | crngcom | |
35 | 25 30 32 34 | syl3anc | |
36 | 35 | fveq2d | |
37 | 2 | ad3antrrr | |
38 | eqid | |
|
39 | 13 33 38 | rhmmul | |
40 | 37 30 32 39 | syl3anc | |
41 | 13 33 38 | rhmmul | |
42 | 37 32 30 41 | syl3anc | |
43 | 36 40 42 | 3eqtr3d | |
44 | imaexg | |
|
45 | 1 38 | ressmulr | |
46 | 2 44 45 | 3syl | |
47 | 46 | ad3antrrr | |
48 | simplrr | |
|
49 | simprr | |
|
50 | 47 48 49 | oveq123d | |
51 | 47 49 48 | oveq123d | |
52 | 43 50 51 | 3eqtr3d | |
53 | 24 52 | rexlimddv | |
54 | 20 53 | rexlimddv | |
55 | 12 54 | sylan2 | |
56 | 55 | ralrimivva | |
57 | eqid | |
|
58 | eqid | |
|
59 | 57 58 | iscrng2 | |
60 | 8 56 59 | sylanbrc | |