Description: The image of an element of the preimage of a function value is the singleton consisting of the function value at one of its elements. (Contributed by AV, 5-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | setpreimafvex.p | |
|
Assertion | imaelsetpreimafv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | |
|
2 | 1 | fvelsetpreimafv | |
3 | fveq2 | |
|
4 | 3 | sneqd | |
5 | 4 | imaeq2d | |
6 | 5 | eqeq2d | |
7 | 6 | cbvrexvw | |
8 | 2 7 | sylibr | |
9 | 8 | 3adant3 | |
10 | imaeq2 | |
|
11 | 10 | 3ad2ant3 | |
12 | fnfun | |
|
13 | funimacnv | |
|
14 | 12 13 | syl | |
15 | 14 | 3ad2ant1 | |
16 | 15 | 3ad2ant1 | |
17 | 1 | elsetpreimafvbi | |
18 | fnfvelrn | |
|
19 | 18 | snssd | |
20 | df-ss | |
|
21 | 19 20 | sylib | |
22 | 21 | 3adant3 | |
23 | simp3 | |
|
24 | 23 | sneqd | |
25 | 22 24 | eqtrd | |
26 | 25 | 3expib | |
27 | 26 | 3ad2ant1 | |
28 | 17 27 | sylbid | |
29 | 28 | imp | |
30 | 29 | 3adant3 | |
31 | 11 16 30 | 3eqtrd | |
32 | 31 | rexlimdv3a | |
33 | 9 32 | mpd | |