Metamath Proof Explorer


Theorem imaelsetpreimafv

Description: The image of an element of the preimage of a function value is the singleton consisting of the function value at one of its elements. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P=z|xAz=F-1Fx
Assertion imaelsetpreimafv FFnASPXSFS=FX

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P=z|xAz=F-1Fx
2 1 fvelsetpreimafv FFnASPxSS=F-1Fx
3 fveq2 y=xFy=Fx
4 3 sneqd y=xFy=Fx
5 4 imaeq2d y=xF-1Fy=F-1Fx
6 5 eqeq2d y=xS=F-1FyS=F-1Fx
7 6 cbvrexvw ySS=F-1FyxSS=F-1Fx
8 2 7 sylibr FFnASPySS=F-1Fy
9 8 3adant3 FFnASPXSySS=F-1Fy
10 imaeq2 S=F-1FyFS=FF-1Fy
11 10 3ad2ant3 FFnASPXSySS=F-1FyFS=FF-1Fy
12 fnfun FFnAFunF
13 funimacnv FunFFF-1Fy=FyranF
14 12 13 syl FFnAFF-1Fy=FyranF
15 14 3ad2ant1 FFnASPXSFF-1Fy=FyranF
16 15 3ad2ant1 FFnASPXSySS=F-1FyFF-1Fy=FyranF
17 1 elsetpreimafvbi FFnASPXSySyAFy=FX
18 fnfvelrn FFnAyAFyranF
19 18 snssd FFnAyAFyranF
20 df-ss FyranFFyranF=Fy
21 19 20 sylib FFnAyAFyranF=Fy
22 21 3adant3 FFnAyAFy=FXFyranF=Fy
23 simp3 FFnAyAFy=FXFy=FX
24 23 sneqd FFnAyAFy=FXFy=FX
25 22 24 eqtrd FFnAyAFy=FXFyranF=FX
26 25 3expib FFnAyAFy=FXFyranF=FX
27 26 3ad2ant1 FFnASPXSyAFy=FXFyranF=FX
28 17 27 sylbid FFnASPXSySFyranF=FX
29 28 imp FFnASPXSySFyranF=FX
30 29 3adant3 FFnASPXSySS=F-1FyFyranF=FX
31 11 16 30 3eqtrd FFnASPXSySS=F-1FyFS=FX
32 31 rexlimdv3a FFnASPXSySS=F-1FyFS=FX
33 9 32 mpd FFnASPXSFS=FX