Metamath Proof Explorer


Theorem imasabl

Description: The image structure of an abelian group is an abelian group ( imasgrp analog). (Contributed by AV, 22-Feb-2025)

Ref Expression
Hypotheses imasabl.u φU=F𝑠R
imasabl.v φV=BaseR
imasabl.p φ+˙=+R
imasabl.f φF:VontoB
imasabl.e φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
imasabl.r φRAbel
imasabl.z 0˙=0R
Assertion imasabl φUAbelF0˙=0U

Proof

Step Hyp Ref Expression
1 imasabl.u φU=F𝑠R
2 imasabl.v φV=BaseR
3 imasabl.p φ+˙=+R
4 imasabl.f φF:VontoB
5 imasabl.e φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
6 imasabl.r φRAbel
7 imasabl.z 0˙=0R
8 6 ablgrpd φRGrp
9 1 2 3 4 5 8 7 imasgrp φUGrpF0˙=0U
10 1 2 4 6 imasbas φB=BaseU
11 10 eqcomd φBaseU=B
12 11 eleq2d φxBaseUxB
13 11 eleq2d φyBaseUyB
14 12 13 anbi12d φxBaseUyBaseUxByB
15 14 adantr φUGrpF0˙=0UxBaseUyBaseUxByB
16 foelcdmi F:VontoBxBaVFa=x
17 16 ex F:VontoBxBaVFa=x
18 foelcdmi F:VontoByBbVFb=y
19 18 ex F:VontoByBbVFb=y
20 17 19 anim12d F:VontoBxByBaVFa=xbVFb=y
21 4 20 syl φxByBaVFa=xbVFb=y
22 21 adantr φUGrpF0˙=0UxByBaVFa=xbVFb=y
23 6 ad3antrrr φUGrpF0˙=0UaVbVRAbel
24 2 eleq2d φaVaBaseR
25 24 biimpd φaVaBaseR
26 25 adantr φUGrpF0˙=0UaVaBaseR
27 26 imp φUGrpF0˙=0UaVaBaseR
28 27 adantr φUGrpF0˙=0UaVbVaBaseR
29 2 eleq2d φbVbBaseR
30 29 biimpd φbVbBaseR
31 30 adantr φUGrpF0˙=0UbVbBaseR
32 31 adantr φUGrpF0˙=0UaVbVbBaseR
33 32 imp φUGrpF0˙=0UaVbVbBaseR
34 eqid BaseR=BaseR
35 eqid +R=+R
36 34 35 ablcom RAbelaBaseRbBaseRa+Rb=b+Ra
37 23 28 33 36 syl3anc φUGrpF0˙=0UaVbVa+Rb=b+Ra
38 37 fveq2d φUGrpF0˙=0UaVbVFa+Rb=Fb+Ra
39 simplll φUGrpF0˙=0UaVbVφ
40 simpr φUGrpF0˙=0UaVaV
41 40 adantr φUGrpF0˙=0UaVbVaV
42 simpr φUGrpF0˙=0UaVbVbV
43 3 eqcomd φ+R=+˙
44 43 oveqd φa+Rb=a+˙b
45 44 fveq2d φFa+Rb=Fa+˙b
46 43 oveqd φp+Rq=p+˙q
47 46 fveq2d φFp+Rq=Fp+˙q
48 45 47 eqeq12d φFa+Rb=Fp+RqFa+˙b=Fp+˙q
49 48 3ad2ant1 φaVbVpVqVFa+Rb=Fp+RqFa+˙b=Fp+˙q
50 5 49 sylibrd φaVbVpVqVFa=FpFb=FqFa+Rb=Fp+Rq
51 eqid +U=+U
52 4 50 1 2 6 35 51 imasaddval φaVbVFa+UFb=Fa+Rb
53 39 41 42 52 syl3anc φUGrpF0˙=0UaVbVFa+UFb=Fa+Rb
54 4 50 1 2 6 35 51 imasaddval φbVaVFb+UFa=Fb+Ra
55 39 42 41 54 syl3anc φUGrpF0˙=0UaVbVFb+UFa=Fb+Ra
56 38 53 55 3eqtr4d φUGrpF0˙=0UaVbVFa+UFb=Fb+UFa
57 56 adantr φUGrpF0˙=0UaVbVFb=yFa=xFa+UFb=Fb+UFa
58 oveq12 Fa=xFb=yFa+UFb=x+Uy
59 58 ancoms Fb=yFa=xFa+UFb=x+Uy
60 oveq12 Fb=yFa=xFb+UFa=y+Ux
61 59 60 eqeq12d Fb=yFa=xFa+UFb=Fb+UFax+Uy=y+Ux
62 61 adantl φUGrpF0˙=0UaVbVFb=yFa=xFa+UFb=Fb+UFax+Uy=y+Ux
63 57 62 mpbid φUGrpF0˙=0UaVbVFb=yFa=xx+Uy=y+Ux
64 63 exp32 φUGrpF0˙=0UaVbVFb=yFa=xx+Uy=y+Ux
65 64 rexlimdva φUGrpF0˙=0UaVbVFb=yFa=xx+Uy=y+Ux
66 65 com23 φUGrpF0˙=0UaVFa=xbVFb=yx+Uy=y+Ux
67 66 rexlimdva φUGrpF0˙=0UaVFa=xbVFb=yx+Uy=y+Ux
68 67 impd φUGrpF0˙=0UaVFa=xbVFb=yx+Uy=y+Ux
69 22 68 syld φUGrpF0˙=0UxByBx+Uy=y+Ux
70 15 69 sylbid φUGrpF0˙=0UxBaseUyBaseUx+Uy=y+Ux
71 70 imp φUGrpF0˙=0UxBaseUyBaseUx+Uy=y+Ux
72 71 ralrimivva φUGrpF0˙=0UxBaseUyBaseUx+Uy=y+Ux
73 simpr φUGrpF0˙=0UUGrpF0˙=0U
74 72 73 jca φUGrpF0˙=0UxBaseUyBaseUx+Uy=y+UxUGrpF0˙=0U
75 9 74 mpdan φxBaseUyBaseUx+Uy=y+UxUGrpF0˙=0U
76 eqid BaseU=BaseU
77 76 51 isabl2 UAbelUGrpxBaseUyBaseUx+Uy=y+Ux
78 77 anbi1i UAbelF0˙=0UUGrpxBaseUyBaseUx+Uy=y+UxF0˙=0U
79 an21 UGrpxBaseUyBaseUx+Uy=y+UxF0˙=0UxBaseUyBaseUx+Uy=y+UxUGrpF0˙=0U
80 78 79 bitri UAbelF0˙=0UxBaseUyBaseUx+Uy=y+UxUGrpF0˙=0U
81 75 80 sylibr φUAbelF0˙=0U