| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasgrp.u |
|
| 2 |
|
imasgrp.v |
|
| 3 |
|
imasgrp.p |
|
| 4 |
|
imasgrp.f |
|
| 5 |
|
imasgrp.e |
|
| 6 |
|
imasgrp.r |
|
| 7 |
|
imasgrp.z |
|
| 8 |
6
|
3ad2ant1 |
|
| 9 |
|
simp2 |
|
| 10 |
2
|
3ad2ant1 |
|
| 11 |
9 10
|
eleqtrd |
|
| 12 |
|
simp3 |
|
| 13 |
12 10
|
eleqtrd |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
14 15
|
grpcl |
|
| 17 |
8 11 13 16
|
syl3anc |
|
| 18 |
3
|
3ad2ant1 |
|
| 19 |
18
|
oveqd |
|
| 20 |
17 19 10
|
3eltr4d |
|
| 21 |
6
|
adantr |
|
| 22 |
11
|
3adant3r3 |
|
| 23 |
13
|
3adant3r3 |
|
| 24 |
|
simpr3 |
|
| 25 |
2
|
adantr |
|
| 26 |
24 25
|
eleqtrd |
|
| 27 |
14 15
|
grpass |
|
| 28 |
21 22 23 26 27
|
syl13anc |
|
| 29 |
3
|
adantr |
|
| 30 |
19
|
3adant3r3 |
|
| 31 |
|
eqidd |
|
| 32 |
29 30 31
|
oveq123d |
|
| 33 |
|
eqidd |
|
| 34 |
29
|
oveqd |
|
| 35 |
29 33 34
|
oveq123d |
|
| 36 |
28 32 35
|
3eqtr4d |
|
| 37 |
36
|
fveq2d |
|
| 38 |
14 7
|
grpidcl |
|
| 39 |
6 38
|
syl |
|
| 40 |
39 2
|
eleqtrrd |
|
| 41 |
3
|
adantr |
|
| 42 |
41
|
oveqd |
|
| 43 |
2
|
eleq2d |
|
| 44 |
43
|
biimpa |
|
| 45 |
14 15 7
|
grplid |
|
| 46 |
6 44 45
|
syl2an2r |
|
| 47 |
42 46
|
eqtrd |
|
| 48 |
47
|
fveq2d |
|
| 49 |
|
eqid |
|
| 50 |
14 49
|
grpinvcl |
|
| 51 |
6 44 50
|
syl2an2r |
|
| 52 |
2
|
adantr |
|
| 53 |
51 52
|
eleqtrrd |
|
| 54 |
41
|
oveqd |
|
| 55 |
14 15 7 49
|
grplinv |
|
| 56 |
6 44 55
|
syl2an2r |
|
| 57 |
54 56
|
eqtrd |
|
| 58 |
57
|
fveq2d |
|
| 59 |
1 2 3 4 5 6 20 37 40 48 53 58
|
imasgrp2 |
|