Metamath Proof Explorer


Theorem imasgrp

Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses imasgrp.u φU=F𝑠R
imasgrp.v φV=BaseR
imasgrp.p φ+˙=+R
imasgrp.f φF:VontoB
imasgrp.e φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
imasgrp.r φRGrp
imasgrp.z 0˙=0R
Assertion imasgrp φUGrpF0˙=0U

Proof

Step Hyp Ref Expression
1 imasgrp.u φU=F𝑠R
2 imasgrp.v φV=BaseR
3 imasgrp.p φ+˙=+R
4 imasgrp.f φF:VontoB
5 imasgrp.e φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
6 imasgrp.r φRGrp
7 imasgrp.z 0˙=0R
8 6 3ad2ant1 φxVyVRGrp
9 simp2 φxVyVxV
10 2 3ad2ant1 φxVyVV=BaseR
11 9 10 eleqtrd φxVyVxBaseR
12 simp3 φxVyVyV
13 12 10 eleqtrd φxVyVyBaseR
14 eqid BaseR=BaseR
15 eqid +R=+R
16 14 15 grpcl RGrpxBaseRyBaseRx+RyBaseR
17 8 11 13 16 syl3anc φxVyVx+RyBaseR
18 3 3ad2ant1 φxVyV+˙=+R
19 18 oveqd φxVyVx+˙y=x+Ry
20 17 19 10 3eltr4d φxVyVx+˙yV
21 6 adantr φxVyVzVRGrp
22 11 3adant3r3 φxVyVzVxBaseR
23 13 3adant3r3 φxVyVzVyBaseR
24 simpr3 φxVyVzVzV
25 2 adantr φxVyVzVV=BaseR
26 24 25 eleqtrd φxVyVzVzBaseR
27 14 15 grpass RGrpxBaseRyBaseRzBaseRx+Ry+Rz=x+Ry+Rz
28 21 22 23 26 27 syl13anc φxVyVzVx+Ry+Rz=x+Ry+Rz
29 3 adantr φxVyVzV+˙=+R
30 19 3adant3r3 φxVyVzVx+˙y=x+Ry
31 eqidd φxVyVzVz=z
32 29 30 31 oveq123d φxVyVzVx+˙y+˙z=x+Ry+Rz
33 eqidd φxVyVzVx=x
34 29 oveqd φxVyVzVy+˙z=y+Rz
35 29 33 34 oveq123d φxVyVzVx+˙y+˙z=x+Ry+Rz
36 28 32 35 3eqtr4d φxVyVzVx+˙y+˙z=x+˙y+˙z
37 36 fveq2d φxVyVzVFx+˙y+˙z=Fx+˙y+˙z
38 14 7 grpidcl RGrp0˙BaseR
39 6 38 syl φ0˙BaseR
40 39 2 eleqtrrd φ0˙V
41 3 adantr φxV+˙=+R
42 41 oveqd φxV0˙+˙x=0˙+Rx
43 2 eleq2d φxVxBaseR
44 43 biimpa φxVxBaseR
45 14 15 7 grplid RGrpxBaseR0˙+Rx=x
46 6 44 45 syl2an2r φxV0˙+Rx=x
47 42 46 eqtrd φxV0˙+˙x=x
48 47 fveq2d φxVF0˙+˙x=Fx
49 eqid invgR=invgR
50 14 49 grpinvcl RGrpxBaseRinvgRxBaseR
51 6 44 50 syl2an2r φxVinvgRxBaseR
52 2 adantr φxVV=BaseR
53 51 52 eleqtrrd φxVinvgRxV
54 41 oveqd φxVinvgRx+˙x=invgRx+Rx
55 14 15 7 49 grplinv RGrpxBaseRinvgRx+Rx=0˙
56 6 44 55 syl2an2r φxVinvgRx+Rx=0˙
57 54 56 eqtrd φxVinvgRx+˙x=0˙
58 57 fveq2d φxVFinvgRx+˙x=F0˙
59 1 2 3 4 5 6 20 37 40 48 53 58 imasgrp2 φUGrpF0˙=0U