Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | imasgrp.u | |
|
imasgrp.v | |
||
imasgrp.p | |
||
imasgrp.f | |
||
imasgrp.e | |
||
imasgrp.r | |
||
imasgrp.z | |
||
Assertion | imasgrp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasgrp.u | |
|
2 | imasgrp.v | |
|
3 | imasgrp.p | |
|
4 | imasgrp.f | |
|
5 | imasgrp.e | |
|
6 | imasgrp.r | |
|
7 | imasgrp.z | |
|
8 | 6 | 3ad2ant1 | |
9 | simp2 | |
|
10 | 2 | 3ad2ant1 | |
11 | 9 10 | eleqtrd | |
12 | simp3 | |
|
13 | 12 10 | eleqtrd | |
14 | eqid | |
|
15 | eqid | |
|
16 | 14 15 | grpcl | |
17 | 8 11 13 16 | syl3anc | |
18 | 3 | 3ad2ant1 | |
19 | 18 | oveqd | |
20 | 17 19 10 | 3eltr4d | |
21 | 6 | adantr | |
22 | 11 | 3adant3r3 | |
23 | 13 | 3adant3r3 | |
24 | simpr3 | |
|
25 | 2 | adantr | |
26 | 24 25 | eleqtrd | |
27 | 14 15 | grpass | |
28 | 21 22 23 26 27 | syl13anc | |
29 | 3 | adantr | |
30 | 19 | 3adant3r3 | |
31 | eqidd | |
|
32 | 29 30 31 | oveq123d | |
33 | eqidd | |
|
34 | 29 | oveqd | |
35 | 29 33 34 | oveq123d | |
36 | 28 32 35 | 3eqtr4d | |
37 | 36 | fveq2d | |
38 | 14 7 | grpidcl | |
39 | 6 38 | syl | |
40 | 39 2 | eleqtrrd | |
41 | 3 | adantr | |
42 | 41 | oveqd | |
43 | 2 | eleq2d | |
44 | 43 | biimpa | |
45 | 14 15 7 | grplid | |
46 | 6 44 45 | syl2an2r | |
47 | 42 46 | eqtrd | |
48 | 47 | fveq2d | |
49 | eqid | |
|
50 | 14 49 | grpinvcl | |
51 | 6 44 50 | syl2an2r | |
52 | 2 | adantr | |
53 | 51 52 | eleqtrrd | |
54 | 41 | oveqd | |
55 | 14 15 7 49 | grplinv | |
56 | 6 44 55 | syl2an2r | |
57 | 54 56 | eqtrd | |
58 | 57 | fveq2d | |
59 | 1 2 3 4 5 6 20 37 40 48 53 58 | imasgrp2 | |