Metamath Proof Explorer


Theorem imasmnd2

Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasmnd.u φU=F𝑠R
imasmnd.v φV=BaseR
imasmnd.p +˙=+R
imasmnd.f φF:VontoB
imasmnd.e φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
imasmnd2.r φRW
imasmnd2.1 φxVyVx+˙yV
imasmnd2.2 φxVyVzVFx+˙y+˙z=Fx+˙y+˙z
imasmnd2.3 φ0˙V
imasmnd2.4 φxVF0˙+˙x=Fx
imasmnd2.5 φxVFx+˙0˙=Fx
Assertion imasmnd2 φUMndF0˙=0U

Proof

Step Hyp Ref Expression
1 imasmnd.u φU=F𝑠R
2 imasmnd.v φV=BaseR
3 imasmnd.p +˙=+R
4 imasmnd.f φF:VontoB
5 imasmnd.e φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
6 imasmnd2.r φRW
7 imasmnd2.1 φxVyVx+˙yV
8 imasmnd2.2 φxVyVzVFx+˙y+˙z=Fx+˙y+˙z
9 imasmnd2.3 φ0˙V
10 imasmnd2.4 φxVF0˙+˙x=Fx
11 imasmnd2.5 φxVFx+˙0˙=Fx
12 1 2 4 6 imasbas φB=BaseU
13 eqidd φ+U=+U
14 eqid +U=+U
15 7 3expb φxVyVx+˙yV
16 15 caovclg φpVqVp+˙qV
17 4 5 1 2 6 3 14 16 imasaddf φ+U:B×BB
18 fovcdm +U:B×BBuBvBu+UvB
19 17 18 syl3an1 φuBvBu+UvB
20 forn F:VontoBranF=B
21 4 20 syl φranF=B
22 21 eleq2d φuranFuB
23 21 eleq2d φvranFvB
24 21 eleq2d φwranFwB
25 22 23 24 3anbi123d φuranFvranFwranFuBvBwB
26 fofn F:VontoBFFnV
27 4 26 syl φFFnV
28 fvelrnb FFnVuranFxVFx=u
29 fvelrnb FFnVvranFyVFy=v
30 fvelrnb FFnVwranFzVFz=w
31 28 29 30 3anbi123d FFnVuranFvranFwranFxVFx=uyVFy=vzVFz=w
32 27 31 syl φuranFvranFwranFxVFx=uyVFy=vzVFz=w
33 25 32 bitr3d φuBvBwBxVFx=uyVFy=vzVFz=w
34 3reeanv xVyVzVFx=uFy=vFz=wxVFx=uyVFy=vzVFz=w
35 33 34 bitr4di φuBvBwBxVyVzVFx=uFy=vFz=w
36 simpl φxVyVzVφ
37 7 3adant3r3 φxVyVzVx+˙yV
38 simpr3 φxVyVzVzV
39 4 5 1 2 6 3 14 imasaddval φx+˙yVzVFx+˙y+UFz=Fx+˙y+˙z
40 36 37 38 39 syl3anc φxVyVzVFx+˙y+UFz=Fx+˙y+˙z
41 simpr1 φxVyVzVxV
42 16 caovclg φyVzVy+˙zV
43 42 3adantr1 φxVyVzVy+˙zV
44 4 5 1 2 6 3 14 imasaddval φxVy+˙zVFx+UFy+˙z=Fx+˙y+˙z
45 36 41 43 44 syl3anc φxVyVzVFx+UFy+˙z=Fx+˙y+˙z
46 8 40 45 3eqtr4d φxVyVzVFx+˙y+UFz=Fx+UFy+˙z
47 4 5 1 2 6 3 14 imasaddval φxVyVFx+UFy=Fx+˙y
48 47 3adant3r3 φxVyVzVFx+UFy=Fx+˙y
49 48 oveq1d φxVyVzVFx+UFy+UFz=Fx+˙y+UFz
50 4 5 1 2 6 3 14 imasaddval φyVzVFy+UFz=Fy+˙z
51 50 3adant3r1 φxVyVzVFy+UFz=Fy+˙z
52 51 oveq2d φxVyVzVFx+UFy+UFz=Fx+UFy+˙z
53 46 49 52 3eqtr4d φxVyVzVFx+UFy+UFz=Fx+UFy+UFz
54 simp1 Fx=uFy=vFz=wFx=u
55 simp2 Fx=uFy=vFz=wFy=v
56 54 55 oveq12d Fx=uFy=vFz=wFx+UFy=u+Uv
57 simp3 Fx=uFy=vFz=wFz=w
58 56 57 oveq12d Fx=uFy=vFz=wFx+UFy+UFz=u+Uv+Uw
59 55 57 oveq12d Fx=uFy=vFz=wFy+UFz=v+Uw
60 54 59 oveq12d Fx=uFy=vFz=wFx+UFy+UFz=u+Uv+Uw
61 58 60 eqeq12d Fx=uFy=vFz=wFx+UFy+UFz=Fx+UFy+UFzu+Uv+Uw=u+Uv+Uw
62 53 61 syl5ibcom φxVyVzVFx=uFy=vFz=wu+Uv+Uw=u+Uv+Uw
63 62 3exp2 φxVyVzVFx=uFy=vFz=wu+Uv+Uw=u+Uv+Uw
64 63 imp32 φxVyVzVFx=uFy=vFz=wu+Uv+Uw=u+Uv+Uw
65 64 rexlimdv φxVyVzVFx=uFy=vFz=wu+Uv+Uw=u+Uv+Uw
66 65 rexlimdvva φxVyVzVFx=uFy=vFz=wu+Uv+Uw=u+Uv+Uw
67 35 66 sylbid φuBvBwBu+Uv+Uw=u+Uv+Uw
68 67 imp φuBvBwBu+Uv+Uw=u+Uv+Uw
69 fof F:VontoBF:VB
70 4 69 syl φF:VB
71 70 9 ffvelcdmd φF0˙B
72 27 28 syl φuranFxVFx=u
73 22 72 bitr3d φuBxVFx=u
74 simpl φxVφ
75 9 adantr φxV0˙V
76 simpr φxVxV
77 4 5 1 2 6 3 14 imasaddval φ0˙VxVF0˙+UFx=F0˙+˙x
78 74 75 76 77 syl3anc φxVF0˙+UFx=F0˙+˙x
79 78 10 eqtrd φxVF0˙+UFx=Fx
80 oveq2 Fx=uF0˙+UFx=F0˙+Uu
81 id Fx=uFx=u
82 80 81 eqeq12d Fx=uF0˙+UFx=FxF0˙+Uu=u
83 79 82 syl5ibcom φxVFx=uF0˙+Uu=u
84 83 rexlimdva φxVFx=uF0˙+Uu=u
85 73 84 sylbid φuBF0˙+Uu=u
86 85 imp φuBF0˙+Uu=u
87 4 5 1 2 6 3 14 imasaddval φxV0˙VFx+UF0˙=Fx+˙0˙
88 75 87 mpd3an3 φxVFx+UF0˙=Fx+˙0˙
89 88 11 eqtrd φxVFx+UF0˙=Fx
90 oveq1 Fx=uFx+UF0˙=u+UF0˙
91 90 81 eqeq12d Fx=uFx+UF0˙=Fxu+UF0˙=u
92 89 91 syl5ibcom φxVFx=uu+UF0˙=u
93 92 rexlimdva φxVFx=uu+UF0˙=u
94 73 93 sylbid φuBu+UF0˙=u
95 94 imp φuBu+UF0˙=u
96 12 13 19 68 71 86 95 ismndd φUMnd
97 12 13 71 86 95 grpidd φF0˙=0U
98 96 97 jca φUMndF0˙=0U