Metamath Proof Explorer


Theorem imasrng

Description: The image structure of a non-unital ring is a non-unital ring ( imasring analog). (Contributed by AV, 22-Feb-2025)

Ref Expression
Hypotheses imasrng.u φU=F𝑠R
imasrng.v φV=BaseR
imasrng.p +˙=+R
imasrng.t ·˙=R
imasrng.f φF:VontoB
imasrng.e1 φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
imasrng.e2 φaVbVpVqVFa=FpFb=FqFa·˙b=Fp·˙q
imasrng.r φRRng
Assertion imasrng φURng

Proof

Step Hyp Ref Expression
1 imasrng.u φU=F𝑠R
2 imasrng.v φV=BaseR
3 imasrng.p +˙=+R
4 imasrng.t ·˙=R
5 imasrng.f φF:VontoB
6 imasrng.e1 φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
7 imasrng.e2 φaVbVpVqVFa=FpFb=FqFa·˙b=Fp·˙q
8 imasrng.r φRRng
9 1 2 5 8 imasbas φB=BaseU
10 eqidd φ+U=+U
11 eqidd φU=U
12 3 a1i φ+˙=+R
13 rngabl RRngRAbel
14 8 13 syl φRAbel
15 eqid 0R=0R
16 1 2 12 5 6 14 15 imasabl φUAbelF0R=0U
17 16 simpld φUAbel
18 eqid U=U
19 8 adantr φuVvVRRng
20 simprl φuVvVuV
21 2 adantr φuVvVV=BaseR
22 20 21 eleqtrd φuVvVuBaseR
23 simprr φuVvVvV
24 23 21 eleqtrd φuVvVvBaseR
25 eqid BaseR=BaseR
26 25 4 rngcl RRnguBaseRvBaseRu·˙vBaseR
27 19 22 24 26 syl3anc φuVvVu·˙vBaseR
28 27 21 eleqtrrd φuVvVu·˙vV
29 28 caovclg φpVqVp·˙qV
30 5 7 1 2 8 4 18 29 imasmulf φU:B×BB
31 30 fovcld φuBvBuUvB
32 forn F:VontoBranF=B
33 5 32 syl φranF=B
34 33 eleq2d φuranFuB
35 33 eleq2d φvranFvB
36 33 eleq2d φwranFwB
37 34 35 36 3anbi123d φuranFvranFwranFuBvBwB
38 fofn F:VontoBFFnV
39 fvelrnb FFnVuranFxVFx=u
40 fvelrnb FFnVvranFyVFy=v
41 fvelrnb FFnVwranFzVFz=w
42 39 40 41 3anbi123d FFnVuranFvranFwranFxVFx=uyVFy=vzVFz=w
43 5 38 42 3syl φuranFvranFwranFxVFx=uyVFy=vzVFz=w
44 37 43 bitr3d φuBvBwBxVFx=uyVFy=vzVFz=w
45 3reeanv xVyVzVFx=uFy=vFz=wxVFx=uyVFy=vzVFz=w
46 44 45 bitr4di φuBvBwBxVyVzVFx=uFy=vFz=w
47 8 adantr φxVyVzVRRng
48 simp2 φxVyVxV
49 2 3ad2ant1 φxVyVV=BaseR
50 48 49 eleqtrd φxVyVxBaseR
51 50 3adant3r3 φxVyVzVxBaseR
52 simp3 φxVyVyV
53 52 49 eleqtrd φxVyVyBaseR
54 53 3adant3r3 φxVyVzVyBaseR
55 simpr3 φxVyVzVzV
56 2 adantr φxVyVzVV=BaseR
57 55 56 eleqtrd φxVyVzVzBaseR
58 25 4 rngass RRngxBaseRyBaseRzBaseRx·˙y·˙z=x·˙y·˙z
59 47 51 54 57 58 syl13anc φxVyVzVx·˙y·˙z=x·˙y·˙z
60 59 fveq2d φxVyVzVFx·˙y·˙z=Fx·˙y·˙z
61 simpl φxVyVzVφ
62 28 caovclg φxVyVx·˙yV
63 62 3adantr3 φxVyVzVx·˙yV
64 5 7 1 2 8 4 18 imasmulval φx·˙yVzVFx·˙yUFz=Fx·˙y·˙z
65 61 63 55 64 syl3anc φxVyVzVFx·˙yUFz=Fx·˙y·˙z
66 simpr1 φxVyVzVxV
67 28 caovclg φyVzVy·˙zV
68 67 3adantr1 φxVyVzVy·˙zV
69 5 7 1 2 8 4 18 imasmulval φxVy·˙zVFxUFy·˙z=Fx·˙y·˙z
70 61 66 68 69 syl3anc φxVyVzVFxUFy·˙z=Fx·˙y·˙z
71 60 65 70 3eqtr4d φxVyVzVFx·˙yUFz=FxUFy·˙z
72 5 7 1 2 8 4 18 imasmulval φxVyVFxUFy=Fx·˙y
73 72 3adant3r3 φxVyVzVFxUFy=Fx·˙y
74 73 oveq1d φxVyVzVFxUFyUFz=Fx·˙yUFz
75 5 7 1 2 8 4 18 imasmulval φyVzVFyUFz=Fy·˙z
76 75 3adant3r1 φxVyVzVFyUFz=Fy·˙z
77 76 oveq2d φxVyVzVFxUFyUFz=FxUFy·˙z
78 71 74 77 3eqtr4d φxVyVzVFxUFyUFz=FxUFyUFz
79 simp1 Fx=uFy=vFz=wFx=u
80 simp2 Fx=uFy=vFz=wFy=v
81 79 80 oveq12d Fx=uFy=vFz=wFxUFy=uUv
82 simp3 Fx=uFy=vFz=wFz=w
83 81 82 oveq12d Fx=uFy=vFz=wFxUFyUFz=uUvUw
84 80 82 oveq12d Fx=uFy=vFz=wFyUFz=vUw
85 79 84 oveq12d Fx=uFy=vFz=wFxUFyUFz=uUvUw
86 83 85 eqeq12d Fx=uFy=vFz=wFxUFyUFz=FxUFyUFzuUvUw=uUvUw
87 78 86 syl5ibcom φxVyVzVFx=uFy=vFz=wuUvUw=uUvUw
88 87 3exp2 φxVyVzVFx=uFy=vFz=wuUvUw=uUvUw
89 88 imp32 φxVyVzVFx=uFy=vFz=wuUvUw=uUvUw
90 89 rexlimdv φxVyVzVFx=uFy=vFz=wuUvUw=uUvUw
91 90 rexlimdvva φxVyVzVFx=uFy=vFz=wuUvUw=uUvUw
92 46 91 sylbid φuBvBwBuUvUw=uUvUw
93 92 imp φuBvBwBuUvUw=uUvUw
94 25 3 4 rngdi RRngxBaseRyBaseRzBaseRx·˙y+˙z=x·˙y+˙x·˙z
95 47 51 54 57 94 syl13anc φxVyVzVx·˙y+˙z=x·˙y+˙x·˙z
96 95 fveq2d φxVyVzVFx·˙y+˙z=Fx·˙y+˙x·˙z
97 25 3 rngacl RRnguBaseRvBaseRu+˙vBaseR
98 19 22 24 97 syl3anc φuVvVu+˙vBaseR
99 98 21 eleqtrrd φuVvVu+˙vV
100 99 caovclg φyVzVy+˙zV
101 100 3adantr1 φxVyVzVy+˙zV
102 5 7 1 2 8 4 18 imasmulval φxVy+˙zVFxUFy+˙z=Fx·˙y+˙z
103 61 66 101 102 syl3anc φxVyVzVFxUFy+˙z=Fx·˙y+˙z
104 28 caovclg φxVzVx·˙zV
105 104 3adantr2 φxVyVzVx·˙zV
106 eqid +U=+U
107 5 6 1 2 8 3 106 imasaddval φx·˙yVx·˙zVFx·˙y+UFx·˙z=Fx·˙y+˙x·˙z
108 61 63 105 107 syl3anc φxVyVzVFx·˙y+UFx·˙z=Fx·˙y+˙x·˙z
109 96 103 108 3eqtr4d φxVyVzVFxUFy+˙z=Fx·˙y+UFx·˙z
110 5 6 1 2 8 3 106 imasaddval φyVzVFy+UFz=Fy+˙z
111 110 3adant3r1 φxVyVzVFy+UFz=Fy+˙z
112 111 oveq2d φxVyVzVFxUFy+UFz=FxUFy+˙z
113 5 7 1 2 8 4 18 imasmulval φxVzVFxUFz=Fx·˙z
114 113 3adant3r2 φxVyVzVFxUFz=Fx·˙z
115 73 114 oveq12d φxVyVzVFxUFy+UFxUFz=Fx·˙y+UFx·˙z
116 109 112 115 3eqtr4d φxVyVzVFxUFy+UFz=FxUFy+UFxUFz
117 80 82 oveq12d Fx=uFy=vFz=wFy+UFz=v+Uw
118 79 117 oveq12d Fx=uFy=vFz=wFxUFy+UFz=uUv+Uw
119 79 82 oveq12d Fx=uFy=vFz=wFxUFz=uUw
120 81 119 oveq12d Fx=uFy=vFz=wFxUFy+UFxUFz=uUv+UuUw
121 118 120 eqeq12d Fx=uFy=vFz=wFxUFy+UFz=FxUFy+UFxUFzuUv+Uw=uUv+UuUw
122 116 121 syl5ibcom φxVyVzVFx=uFy=vFz=wuUv+Uw=uUv+UuUw
123 122 3exp2 φxVyVzVFx=uFy=vFz=wuUv+Uw=uUv+UuUw
124 123 imp32 φxVyVzVFx=uFy=vFz=wuUv+Uw=uUv+UuUw
125 124 rexlimdv φxVyVzVFx=uFy=vFz=wuUv+Uw=uUv+UuUw
126 125 rexlimdvva φxVyVzVFx=uFy=vFz=wuUv+Uw=uUv+UuUw
127 46 126 sylbid φuBvBwBuUv+Uw=uUv+UuUw
128 127 imp φuBvBwBuUv+Uw=uUv+UuUw
129 25 3 4 rngdir RRngxBaseRyBaseRzBaseRx+˙y·˙z=x·˙z+˙y·˙z
130 47 51 54 57 129 syl13anc φxVyVzVx+˙y·˙z=x·˙z+˙y·˙z
131 130 fveq2d φxVyVzVFx+˙y·˙z=Fx·˙z+˙y·˙z
132 99 caovclg φxVyVx+˙yV
133 132 3adantr3 φxVyVzVx+˙yV
134 5 7 1 2 8 4 18 imasmulval φx+˙yVzVFx+˙yUFz=Fx+˙y·˙z
135 61 133 55 134 syl3anc φxVyVzVFx+˙yUFz=Fx+˙y·˙z
136 5 6 1 2 8 3 106 imasaddval φx·˙zVy·˙zVFx·˙z+UFy·˙z=Fx·˙z+˙y·˙z
137 61 105 68 136 syl3anc φxVyVzVFx·˙z+UFy·˙z=Fx·˙z+˙y·˙z
138 131 135 137 3eqtr4d φxVyVzVFx+˙yUFz=Fx·˙z+UFy·˙z
139 5 6 1 2 8 3 106 imasaddval φxVyVFx+UFy=Fx+˙y
140 139 3adant3r3 φxVyVzVFx+UFy=Fx+˙y
141 140 oveq1d φxVyVzVFx+UFyUFz=Fx+˙yUFz
142 114 76 oveq12d φxVyVzVFxUFz+UFyUFz=Fx·˙z+UFy·˙z
143 138 141 142 3eqtr4d φxVyVzVFx+UFyUFz=FxUFz+UFyUFz
144 79 80 oveq12d Fx=uFy=vFz=wFx+UFy=u+Uv
145 144 82 oveq12d Fx=uFy=vFz=wFx+UFyUFz=u+UvUw
146 119 84 oveq12d Fx=uFy=vFz=wFxUFz+UFyUFz=uUw+UvUw
147 145 146 eqeq12d Fx=uFy=vFz=wFx+UFyUFz=FxUFz+UFyUFzu+UvUw=uUw+UvUw
148 143 147 syl5ibcom φxVyVzVFx=uFy=vFz=wu+UvUw=uUw+UvUw
149 148 3exp2 φxVyVzVFx=uFy=vFz=wu+UvUw=uUw+UvUw
150 149 imp32 φxVyVzVFx=uFy=vFz=wu+UvUw=uUw+UvUw
151 150 rexlimdv φxVyVzVFx=uFy=vFz=wu+UvUw=uUw+UvUw
152 151 rexlimdvva φxVyVzVFx=uFy=vFz=wu+UvUw=uUw+UvUw
153 46 152 sylbid φuBvBwBu+UvUw=uUw+UvUw
154 153 imp φuBvBwBu+UvUw=uUw+UvUw
155 9 10 11 17 31 93 128 154 isrngd φURng