Metamath Proof Explorer


Theorem indispconn

Description: The indiscrete topology (or trivial topology) on any set is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indispconn A PConn

Proof

Step Hyp Ref Expression
1 indistop A Top
2 simpl x A y A x A
3 0ex V
4 n0i x A ¬ A =
5 prprc2 ¬ A V A =
6 5 unieqd ¬ A V A =
7 3 unisn =
8 6 7 eqtrdi ¬ A V A =
9 4 8 nsyl2 x A A V
10 9 adantr x A y A A V
11 uniprg V A V A = A
12 3 10 11 sylancr x A y A A = A
13 uncom A = A
14 un0 A = A
15 13 14 eqtri A = A
16 12 15 eqtrdi x A y A A = A
17 2 16 eleqtrd x A y A x A
18 simpr x A y A y A
19 18 16 eleqtrd x A y A y A
20 17 19 ifcld x A y A if z = 0 x y A
21 20 adantr x A y A z 0 1 if z = 0 x y A
22 21 fmpttd x A y A z 0 1 if z = 0 x y : 0 1 A
23 ovex 0 1 V
24 elmapg A V 0 1 V z 0 1 if z = 0 x y A 0 1 z 0 1 if z = 0 x y : 0 1 A
25 10 23 24 sylancl x A y A z 0 1 if z = 0 x y A 0 1 z 0 1 if z = 0 x y : 0 1 A
26 22 25 mpbird x A y A z 0 1 if z = 0 x y A 0 1
27 iitopon II TopOn 0 1
28 cnindis II TopOn 0 1 A V II Cn A = A 0 1
29 27 10 28 sylancr x A y A II Cn A = A 0 1
30 26 29 eleqtrrd x A y A z 0 1 if z = 0 x y II Cn A
31 0elunit 0 0 1
32 iftrue z = 0 if z = 0 x y = x
33 eqid z 0 1 if z = 0 x y = z 0 1 if z = 0 x y
34 vex x V
35 32 33 34 fvmpt 0 0 1 z 0 1 if z = 0 x y 0 = x
36 31 35 mp1i x A y A z 0 1 if z = 0 x y 0 = x
37 1elunit 1 0 1
38 ax-1ne0 1 0
39 neeq1 z = 1 z 0 1 0
40 38 39 mpbiri z = 1 z 0
41 ifnefalse z 0 if z = 0 x y = y
42 40 41 syl z = 1 if z = 0 x y = y
43 vex y V
44 42 33 43 fvmpt 1 0 1 z 0 1 if z = 0 x y 1 = y
45 37 44 mp1i x A y A z 0 1 if z = 0 x y 1 = y
46 fveq1 f = z 0 1 if z = 0 x y f 0 = z 0 1 if z = 0 x y 0
47 46 eqeq1d f = z 0 1 if z = 0 x y f 0 = x z 0 1 if z = 0 x y 0 = x
48 fveq1 f = z 0 1 if z = 0 x y f 1 = z 0 1 if z = 0 x y 1
49 48 eqeq1d f = z 0 1 if z = 0 x y f 1 = y z 0 1 if z = 0 x y 1 = y
50 47 49 anbi12d f = z 0 1 if z = 0 x y f 0 = x f 1 = y z 0 1 if z = 0 x y 0 = x z 0 1 if z = 0 x y 1 = y
51 50 rspcev z 0 1 if z = 0 x y II Cn A z 0 1 if z = 0 x y 0 = x z 0 1 if z = 0 x y 1 = y f II Cn A f 0 = x f 1 = y
52 30 36 45 51 syl12anc x A y A f II Cn A f 0 = x f 1 = y
53 52 rgen2 x A y A f II Cn A f 0 = x f 1 = y
54 eqid A = A
55 54 ispconn A PConn A Top x A y A f II Cn A f 0 = x f 1 = y
56 1 53 55 mpbir2an A PConn