| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sspr |  | 
						
							| 2 |  | unieq |  | 
						
							| 3 |  | uni0 |  | 
						
							| 4 |  | 0ex |  | 
						
							| 5 | 4 | prid1 |  | 
						
							| 6 | 3 5 | eqeltri |  | 
						
							| 7 | 2 6 | eqeltrdi |  | 
						
							| 8 | 7 | a1i |  | 
						
							| 9 |  | unieq |  | 
						
							| 10 | 4 | unisn |  | 
						
							| 11 | 10 5 | eqeltri |  | 
						
							| 12 | 9 11 | eqeltrdi |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 | 8 13 | jaod |  | 
						
							| 15 |  | unieq |  | 
						
							| 16 |  | unisng |  | 
						
							| 17 | 15 16 | sylan9eqr |  | 
						
							| 18 |  | prid2g |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 17 19 | eqeltrd |  | 
						
							| 21 | 20 | ex |  | 
						
							| 22 |  | unieq |  | 
						
							| 23 |  | uniprg |  | 
						
							| 24 | 4 23 | mpan |  | 
						
							| 25 |  | uncom |  | 
						
							| 26 |  | un0 |  | 
						
							| 27 | 25 26 | eqtri |  | 
						
							| 28 | 24 27 | eqtrdi |  | 
						
							| 29 | 22 28 | sylan9eqr |  | 
						
							| 30 | 18 | adantr |  | 
						
							| 31 | 29 30 | eqeltrd |  | 
						
							| 32 | 31 | ex |  | 
						
							| 33 | 21 32 | jaod |  | 
						
							| 34 | 14 33 | jaod |  | 
						
							| 35 | 1 34 | biimtrid |  | 
						
							| 36 | 35 | alrimiv |  | 
						
							| 37 |  | vex |  | 
						
							| 38 | 37 | elpr |  | 
						
							| 39 |  | vex |  | 
						
							| 40 | 39 | elpr |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 | 41 | ineq2d |  | 
						
							| 43 |  | in0 |  | 
						
							| 44 | 42 43 | eqtrdi |  | 
						
							| 45 | 44 5 | eqeltrdi |  | 
						
							| 46 | 45 | a1i |  | 
						
							| 47 |  | simpr |  | 
						
							| 48 | 47 | ineq2d |  | 
						
							| 49 | 48 43 | eqtrdi |  | 
						
							| 50 | 49 5 | eqeltrdi |  | 
						
							| 51 | 50 | a1i |  | 
						
							| 52 |  | simpl |  | 
						
							| 53 | 52 | ineq1d |  | 
						
							| 54 |  | 0in |  | 
						
							| 55 | 53 54 | eqtrdi |  | 
						
							| 56 | 55 5 | eqeltrdi |  | 
						
							| 57 | 56 | a1i |  | 
						
							| 58 |  | ineq12 |  | 
						
							| 59 | 58 | adantl |  | 
						
							| 60 |  | inidm |  | 
						
							| 61 | 59 60 | eqtrdi |  | 
						
							| 62 | 18 | adantr |  | 
						
							| 63 | 61 62 | eqeltrd |  | 
						
							| 64 | 63 | ex |  | 
						
							| 65 | 46 51 57 64 | ccased |  | 
						
							| 66 | 65 | expdimp |  | 
						
							| 67 | 40 66 | biimtrid |  | 
						
							| 68 | 67 | ralrimiv |  | 
						
							| 69 | 68 | ex |  | 
						
							| 70 | 38 69 | biimtrid |  | 
						
							| 71 | 70 | ralrimiv |  | 
						
							| 72 |  | prex |  | 
						
							| 73 |  | istopg |  | 
						
							| 74 | 72 73 | mp1i |  | 
						
							| 75 | 36 71 74 | mpbir2and |  | 
						
							| 76 | 28 | eqcomd |  | 
						
							| 77 |  | istopon |  | 
						
							| 78 | 75 76 77 | sylanbrc |  |