Metamath Proof Explorer


Theorem indistopon

Description: The indiscrete topology on a set A . Part of Example 2 in Munkres p. 77. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion indistopon AVATopOnA

Proof

Step Hyp Ref Expression
1 sspr xAx=x=x=Ax=A
2 unieq x=x=
3 uni0 =
4 0ex V
5 4 prid1 A
6 3 5 eqeltri A
7 2 6 eqeltrdi x=xA
8 7 a1i AVx=xA
9 unieq x=x=
10 4 unisn =
11 10 5 eqeltri A
12 9 11 eqeltrdi x=xA
13 12 a1i AVx=xA
14 8 13 jaod AVx=x=xA
15 unieq x=Ax=A
16 unisng AVA=A
17 15 16 sylan9eqr AVx=Ax=A
18 prid2g AVAA
19 18 adantr AVx=AAA
20 17 19 eqeltrd AVx=AxA
21 20 ex AVx=AxA
22 unieq x=Ax=A
23 uniprg VAVA=A
24 4 23 mpan AVA=A
25 uncom A=A
26 un0 A=A
27 25 26 eqtri A=A
28 24 27 eqtrdi AVA=A
29 22 28 sylan9eqr AVx=Ax=A
30 18 adantr AVx=AAA
31 29 30 eqeltrd AVx=AxA
32 31 ex AVx=AxA
33 21 32 jaod AVx=Ax=AxA
34 14 33 jaod AVx=x=x=Ax=AxA
35 1 34 biimtrid AVxAxA
36 35 alrimiv AVxxAxA
37 vex xV
38 37 elpr xAx=x=A
39 vex yV
40 39 elpr yAy=y=A
41 simpr x=y=y=
42 41 ineq2d x=y=xy=x
43 in0 x=
44 42 43 eqtrdi x=y=xy=
45 44 5 eqeltrdi x=y=xyA
46 45 a1i AVx=y=xyA
47 simpr x=Ay=y=
48 47 ineq2d x=Ay=xy=x
49 48 43 eqtrdi x=Ay=xy=
50 49 5 eqeltrdi x=Ay=xyA
51 50 a1i AVx=Ay=xyA
52 simpl x=y=Ax=
53 52 ineq1d x=y=Axy=y
54 0in y=
55 53 54 eqtrdi x=y=Axy=
56 55 5 eqeltrdi x=y=AxyA
57 56 a1i AVx=y=AxyA
58 ineq12 x=Ay=Axy=AA
59 58 adantl AVx=Ay=Axy=AA
60 inidm AA=A
61 59 60 eqtrdi AVx=Ay=Axy=A
62 18 adantr AVx=Ay=AAA
63 61 62 eqeltrd AVx=Ay=AxyA
64 63 ex AVx=Ay=AxyA
65 46 51 57 64 ccased AVx=x=Ay=y=AxyA
66 65 expdimp AVx=x=Ay=y=AxyA
67 40 66 biimtrid AVx=x=AyAxyA
68 67 ralrimiv AVx=x=AyAxyA
69 68 ex AVx=x=AyAxyA
70 38 69 biimtrid AVxAyAxyA
71 70 ralrimiv AVxAyAxyA
72 prex AV
73 istopg AVATopxxAxAxAyAxyA
74 72 73 mp1i AVATopxxAxAxAyAxyA
75 36 71 74 mpbir2and AVATop
76 28 eqcomd AVA=A
77 istopon ATopOnAATopA=A
78 75 76 77 sylanbrc AVATopOnA