Description: The indiscrete topology on a set A . Part of Example 2 in Munkres p. 77. (Contributed by Mario Carneiro, 13-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | indistopon | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspr | |
|
2 | unieq | |
|
3 | uni0 | |
|
4 | 0ex | |
|
5 | 4 | prid1 | |
6 | 3 5 | eqeltri | |
7 | 2 6 | eqeltrdi | |
8 | 7 | a1i | |
9 | unieq | |
|
10 | 4 | unisn | |
11 | 10 5 | eqeltri | |
12 | 9 11 | eqeltrdi | |
13 | 12 | a1i | |
14 | 8 13 | jaod | |
15 | unieq | |
|
16 | unisng | |
|
17 | 15 16 | sylan9eqr | |
18 | prid2g | |
|
19 | 18 | adantr | |
20 | 17 19 | eqeltrd | |
21 | 20 | ex | |
22 | unieq | |
|
23 | uniprg | |
|
24 | 4 23 | mpan | |
25 | uncom | |
|
26 | un0 | |
|
27 | 25 26 | eqtri | |
28 | 24 27 | eqtrdi | |
29 | 22 28 | sylan9eqr | |
30 | 18 | adantr | |
31 | 29 30 | eqeltrd | |
32 | 31 | ex | |
33 | 21 32 | jaod | |
34 | 14 33 | jaod | |
35 | 1 34 | biimtrid | |
36 | 35 | alrimiv | |
37 | vex | |
|
38 | 37 | elpr | |
39 | vex | |
|
40 | 39 | elpr | |
41 | simpr | |
|
42 | 41 | ineq2d | |
43 | in0 | |
|
44 | 42 43 | eqtrdi | |
45 | 44 5 | eqeltrdi | |
46 | 45 | a1i | |
47 | simpr | |
|
48 | 47 | ineq2d | |
49 | 48 43 | eqtrdi | |
50 | 49 5 | eqeltrdi | |
51 | 50 | a1i | |
52 | simpl | |
|
53 | 52 | ineq1d | |
54 | 0in | |
|
55 | 53 54 | eqtrdi | |
56 | 55 5 | eqeltrdi | |
57 | 56 | a1i | |
58 | ineq12 | |
|
59 | 58 | adantl | |
60 | inidm | |
|
61 | 59 60 | eqtrdi | |
62 | 18 | adantr | |
63 | 61 62 | eqeltrd | |
64 | 63 | ex | |
65 | 46 51 57 64 | ccased | |
66 | 65 | expdimp | |
67 | 40 66 | biimtrid | |
68 | 67 | ralrimiv | |
69 | 68 | ex | |
70 | 38 69 | biimtrid | |
71 | 70 | ralrimiv | |
72 | prex | |
|
73 | istopg | |
|
74 | 72 73 | mp1i | |
75 | 36 71 74 | mpbir2and | |
76 | 28 | eqcomd | |
77 | istopon | |
|
78 | 75 76 77 | sylanbrc | |