Metamath Proof Explorer


Theorem inductionexd

Description: Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Assertion inductionexd N34N+5

Proof

Step Hyp Ref Expression
1 oveq2 k=14k=41
2 1 oveq1d k=14k+5=41+5
3 2 breq2d k=134k+5341+5
4 oveq2 k=n4k=4n
5 4 oveq1d k=n4k+5=4n+5
6 5 breq2d k=n34k+534n+5
7 oveq2 k=n+14k=4n+1
8 7 oveq1d k=n+14k+5=4n+1+5
9 8 breq2d k=n+134k+534n+1+5
10 oveq2 k=N4k=4N
11 10 oveq1d k=N4k+5=4N+5
12 11 breq2d k=N34k+534N+5
13 3z 3
14 4z 4
15 1nn0 10
16 zexpcl 41041
17 14 15 16 mp2an 41
18 5nn 5
19 18 nnzi 5
20 zaddcl 41541+5
21 17 19 20 mp2an 41+5
22 13 13 21 3pm3.2i 3341+5
23 3t3e9 33=9
24 4nn0 40
25 24 numexp1 41=4
26 25 oveq1i 41+5=4+5
27 5cn 5
28 4cn 4
29 5p4e9 5+4=9
30 27 28 29 addcomli 4+5=9
31 26 30 eqtri 41+5=9
32 23 31 eqtr4i 33=41+5
33 dvds0lem 3341+533=41+5341+5
34 22 32 33 mp2an 341+5
35 13 a1i n34n+53
36 4nn 4
37 36 a1i n4
38 nnnn0 nn0
39 37 38 nnexpcld n4n
40 39 nnzd n4n
41 40 adantr n34n+54n
42 19 a1i n34n+55
43 41 42 zaddcld n34n+54n+5
44 14 a1i n34n+54
45 43 44 zmulcld n34n+54n+54
46 35 42 zmulcld n34n+535
47 simpr n34n+534n+5
48 35 43 44 47 dvdsmultr1d n34n+534n+54
49 dvdsmul1 35335
50 13 19 49 mp2an 335
51 50 a1i n34n+5335
52 35 45 46 48 51 dvds2subd n34n+534n+5435
53 39 nncnd n4n
54 27 a1i n5
55 28 a1i n4
56 53 54 55 adddird n4n+54=4n4+54
57 56 oveq1d n4n+5415=4n4+54-15
58 3cn 3
59 5t3e15 53=15
60 27 58 59 mulcomli 35=15
61 60 a1i n35=15
62 61 oveq2d n4n+5435=4n+5415
63 55 38 expp1d n4n+1=4n4
64 ax-1cn 1
65 3p1e4 3+1=4
66 58 64 65 addcomli 1+3=4
67 66 eqcomi 4=1+3
68 67 oveq1i 43=1+3-3
69 64 58 pncan3oi 1+3-3=1
70 68 69 eqtri 43=1
71 70 oveq2i 543=51
72 27 28 58 subdii 543=5453
73 27 mulridi 51=5
74 71 72 73 3eqtr3ri 5=5453
75 59 eqcomi 15=53
76 75 oveq2i 5415=5453
77 74 76 eqtr4i 5=5415
78 77 a1i n5=5415
79 63 78 oveq12d n4n+1+5=4n4+54-15
80 53 55 mulcld n4n4
81 54 55 mulcld n54
82 5nn0 50
83 15 82 deccl 150
84 83 nn0cni 15
85 84 a1i n15
86 80 81 85 addsubassd n4n4+54-15=4n4+54-15
87 79 86 eqtr4d n4n+1+5=4n4+54-15
88 57 62 87 3eqtr4rd n4n+1+5=4n+5435
89 88 adantr n34n+54n+1+5=4n+5435
90 52 89 breqtrrd n34n+534n+1+5
91 90 ex n34n+534n+1+5
92 3 6 9 12 34 91 nnind N34N+5