Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
oveq1d |
|
3 |
2
|
breq2d |
|
4 |
|
oveq2 |
|
5 |
4
|
oveq1d |
|
6 |
5
|
breq2d |
|
7 |
|
oveq2 |
|
8 |
7
|
oveq1d |
|
9 |
8
|
breq2d |
|
10 |
|
oveq2 |
|
11 |
10
|
oveq1d |
|
12 |
11
|
breq2d |
|
13 |
|
3z |
|
14 |
|
4z |
|
15 |
|
1nn0 |
|
16 |
|
zexpcl |
|
17 |
14 15 16
|
mp2an |
|
18 |
|
5nn |
|
19 |
18
|
nnzi |
|
20 |
|
zaddcl |
|
21 |
17 19 20
|
mp2an |
|
22 |
13 13 21
|
3pm3.2i |
|
23 |
|
3t3e9 |
|
24 |
|
4nn0 |
|
25 |
24
|
numexp1 |
|
26 |
25
|
oveq1i |
|
27 |
|
5cn |
|
28 |
|
4cn |
|
29 |
|
5p4e9 |
|
30 |
27 28 29
|
addcomli |
|
31 |
26 30
|
eqtri |
|
32 |
23 31
|
eqtr4i |
|
33 |
|
dvds0lem |
|
34 |
22 32 33
|
mp2an |
|
35 |
13
|
a1i |
|
36 |
|
4nn |
|
37 |
36
|
a1i |
|
38 |
|
nnnn0 |
|
39 |
37 38
|
nnexpcld |
|
40 |
39
|
nnzd |
|
41 |
40
|
adantr |
|
42 |
19
|
a1i |
|
43 |
41 42
|
zaddcld |
|
44 |
14
|
a1i |
|
45 |
43 44
|
zmulcld |
|
46 |
35 42
|
zmulcld |
|
47 |
|
simpr |
|
48 |
35 43 44 47
|
dvdsmultr1d |
|
49 |
|
dvdsmul1 |
|
50 |
13 19 49
|
mp2an |
|
51 |
50
|
a1i |
|
52 |
35 45 46 48 51
|
dvds2subd |
|
53 |
39
|
nncnd |
|
54 |
27
|
a1i |
|
55 |
28
|
a1i |
|
56 |
53 54 55
|
adddird |
|
57 |
56
|
oveq1d |
|
58 |
|
3cn |
|
59 |
|
5t3e15 |
|
60 |
27 58 59
|
mulcomli |
|
61 |
60
|
a1i |
|
62 |
61
|
oveq2d |
|
63 |
55 38
|
expp1d |
|
64 |
|
ax-1cn |
|
65 |
|
3p1e4 |
|
66 |
58 64 65
|
addcomli |
|
67 |
66
|
eqcomi |
|
68 |
67
|
oveq1i |
|
69 |
64 58
|
pncan3oi |
|
70 |
68 69
|
eqtri |
|
71 |
70
|
oveq2i |
|
72 |
27 28 58
|
subdii |
|
73 |
27
|
mulid1i |
|
74 |
71 72 73
|
3eqtr3ri |
|
75 |
59
|
eqcomi |
|
76 |
75
|
oveq2i |
|
77 |
74 76
|
eqtr4i |
|
78 |
77
|
a1i |
|
79 |
63 78
|
oveq12d |
|
80 |
53 55
|
mulcld |
|
81 |
54 55
|
mulcld |
|
82 |
|
5nn0 |
|
83 |
15 82
|
deccl |
|
84 |
83
|
nn0cni |
|
85 |
84
|
a1i |
|
86 |
80 81 85
|
addsubassd |
|
87 |
79 86
|
eqtr4d |
|
88 |
57 62 87
|
3eqtr4rd |
|
89 |
88
|
adantr |
|
90 |
52 89
|
breqtrrd |
|
91 |
90
|
ex |
|
92 |
3 6 9 12 34 91
|
nnind |
|