Description: The intersection of a family of universes is a universe. (Contributed by Mario Carneiro, 9-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | intgru | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | intex | |
|
3 | 1 2 | sylib | |
4 | dfss3 | |
|
5 | grutr | |
|
6 | 5 | ralimi | |
7 | 4 6 | sylbi | |
8 | trint | |
|
9 | 7 8 | syl | |
10 | 9 | adantr | |
11 | grupw | |
|
12 | 11 | ex | |
13 | 12 | ral2imi | |
14 | vex | |
|
15 | 14 | elint2 | |
16 | vpwex | |
|
17 | 16 | elint2 | |
18 | 13 15 17 | 3imtr4g | |
19 | 18 | imp | |
20 | 19 | adantlr | |
21 | r19.26 | |
|
22 | grupr | |
|
23 | 22 | 3expia | |
24 | 23 | ral2imi | |
25 | 21 24 | sylbir | |
26 | vex | |
|
27 | 26 | elint2 | |
28 | prex | |
|
29 | 28 | elint2 | |
30 | 25 27 29 | 3imtr4g | |
31 | 15 30 | sylan2b | |
32 | 31 | ralrimiv | |
33 | 32 | adantlr | |
34 | elmapg | |
|
35 | 34 | elvd | |
36 | 2 35 | sylbi | |
37 | 36 | ad2antlr | |
38 | intss1 | |
|
39 | fss | |
|
40 | 38 39 | sylan2 | |
41 | 40 | ralrimiva | |
42 | gruurn | |
|
43 | 42 | 3expia | |
44 | 43 | ral2imi | |
45 | 21 44 | sylbir | |
46 | 15 45 | sylan2b | |
47 | 41 46 | syl5 | |
48 | 26 | rnex | |
49 | 48 | uniex | |
50 | 49 | elint2 | |
51 | 47 50 | syl6ibr | |
52 | 51 | adantlr | |
53 | 37 52 | sylbid | |
54 | 53 | ralrimiv | |
55 | 20 33 54 | 3jca | |
56 | 55 | ralrimiva | |
57 | 4 56 | sylanb | |
58 | elgrug | |
|
59 | 58 | biimpar | |
60 | 3 10 57 59 | syl12anc | |