Metamath Proof Explorer


Theorem intsal

Description: The arbitrary intersection of sigma-algebra (on the same set X ) is a sigma-algebra ( on the same set X , see intsaluni ). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses intsal.ga φGSAlg
intsal.gn0 φG
intsal.x φsGs=X
Assertion intsal φGSAlg

Proof

Step Hyp Ref Expression
1 intsal.ga φGSAlg
2 intsal.gn0 φG
3 intsal.x φsGs=X
4 simpl φsGφ
5 1 sselda φsGsSAlg
6 simpr φsSAlgsSAlg
7 0sal sSAlgs
8 6 7 syl φsSAlgs
9 4 5 8 syl2anc φsGs
10 9 ralrimiva φsGs
11 0ex V
12 11 elint2 GsGs
13 10 12 sylibr φG
14 1 2 3 intsaluni φG=X
15 14 eqcomd φX=G
16 15 adantr φsGX=G
17 3 16 eqtr2d φsGG=s
18 17 difeq1d φsGGy=sy
19 18 adantlr φyGsGGy=sy
20 5 adantlr φyGsGsSAlg
21 elinti yGsGys
22 21 imp yGsGys
23 22 adantll φyGsGys
24 saldifcl sSAlgyssys
25 20 23 24 syl2anc φyGsGsys
26 19 25 eqeltrd φyGsGGys
27 26 ralrimiva φyGsGGys
28 intex GGV
29 28 biimpi GGV
30 2 29 syl φGV
31 30 uniexd φGV
32 31 difexd φGyV
33 32 adantr φyGGyV
34 elintg GyVGyGsGGys
35 33 34 syl φyGGyGsGGys
36 27 35 mpbird φyGGyG
37 36 ralrimiva φyGGyG
38 5 ad4ant14 φy𝒫GyωsGsSAlg
39 elpwi y𝒫GyG
40 39 adantr y𝒫GsGyG
41 intss1 sGGs
42 41 adantl y𝒫GsGGs
43 40 42 sstrd y𝒫GsGys
44 vex yV
45 44 elpw y𝒫sys
46 43 45 sylibr y𝒫GsGy𝒫s
47 46 adantll φy𝒫GsGy𝒫s
48 47 adantlr φy𝒫GyωsGy𝒫s
49 simplr φy𝒫GyωsGyω
50 38 48 49 salunicl φy𝒫GyωsGys
51 50 ralrimiva φy𝒫GyωsGys
52 vuniex yV
53 52 a1i φy𝒫GyωyV
54 elintg yVyGsGys
55 53 54 syl φy𝒫GyωyGsGys
56 51 55 mpbird φy𝒫GyωyG
57 56 ex φy𝒫GyωyG
58 57 ralrimiva φy𝒫GyωyG
59 13 37 58 3jca φGyGGyGy𝒫GyωyG
60 issal GVGSAlgGyGGyGy𝒫GyωyG
61 30 60 syl φGSAlgGyGGyGy𝒫GyωyG
62 59 61 mpbird φGSAlg