Description: The arbitrary intersection of sigma-algebra (on the same set X ) is a sigma-algebra ( on the same set X , see intsaluni ). (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | intsal.ga | |
|
intsal.gn0 | |
||
intsal.x | |
||
Assertion | intsal | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intsal.ga | |
|
2 | intsal.gn0 | |
|
3 | intsal.x | |
|
4 | simpl | |
|
5 | 1 | sselda | |
6 | simpr | |
|
7 | 0sal | |
|
8 | 6 7 | syl | |
9 | 4 5 8 | syl2anc | |
10 | 9 | ralrimiva | |
11 | 0ex | |
|
12 | 11 | elint2 | |
13 | 10 12 | sylibr | |
14 | 1 2 3 | intsaluni | |
15 | 14 | eqcomd | |
16 | 15 | adantr | |
17 | 3 16 | eqtr2d | |
18 | 17 | difeq1d | |
19 | 18 | adantlr | |
20 | 5 | adantlr | |
21 | elinti | |
|
22 | 21 | imp | |
23 | 22 | adantll | |
24 | saldifcl | |
|
25 | 20 23 24 | syl2anc | |
26 | 19 25 | eqeltrd | |
27 | 26 | ralrimiva | |
28 | intex | |
|
29 | 28 | biimpi | |
30 | 2 29 | syl | |
31 | 30 | uniexd | |
32 | 31 | difexd | |
33 | 32 | adantr | |
34 | elintg | |
|
35 | 33 34 | syl | |
36 | 27 35 | mpbird | |
37 | 36 | ralrimiva | |
38 | 5 | ad4ant14 | |
39 | elpwi | |
|
40 | 39 | adantr | |
41 | intss1 | |
|
42 | 41 | adantl | |
43 | 40 42 | sstrd | |
44 | vex | |
|
45 | 44 | elpw | |
46 | 43 45 | sylibr | |
47 | 46 | adantll | |
48 | 47 | adantlr | |
49 | simplr | |
|
50 | 38 48 49 | salunicl | |
51 | 50 | ralrimiva | |
52 | vuniex | |
|
53 | 52 | a1i | |
54 | elintg | |
|
55 | 53 54 | syl | |
56 | 51 55 | mpbird | |
57 | 56 | ex | |
58 | 57 | ralrimiva | |
59 | 13 37 58 | 3jca | |
60 | issal | |
|
61 | 30 60 | syl | |
62 | 59 61 | mpbird | |