Metamath Proof Explorer


Theorem iooelexlt

Description: An element of an open interval is not its smallest element. (Contributed by ML, 2-Aug-2020)

Ref Expression
Assertion iooelexlt XAByABy<X

Proof

Step Hyp Ref Expression
1 eliooxr XABA*B*
2 1 simpld XABA*
3 elxr A*AA=+∞A=−∞
4 19.3v yXABAXABA
5 ovex A+X2V
6 nfcv _yA+X2
7 nfre1 yyABy<X
8 elioore XABX
9 readdcl AXA+X
10 9 rehalfcld AXA+X2
11 8 10 sylan2 AXABA+X2
12 11 ancoms XABAA+X2
13 12 rexrd XABAA+X2*
14 eliooord XABA<XX<B
15 14 simpld XABA<X
16 15 adantr XABAA<X
17 avglt1 AXA<XA<A+X2
18 8 17 sylan2 AXABA<XA<A+X2
19 18 ancoms XABAA<XA<A+X2
20 16 19 mpbid XABAA<A+X2
21 8 rexrd XABX*
22 21 adantr XABAX*
23 1 simprd XABB*
24 23 adantr XABAB*
25 avglt2 AXA<XA+X2<X
26 8 25 sylan2 AXABA<XA+X2<X
27 26 ancoms XABAA<XA+X2<X
28 16 27 mpbid XABAA+X2<X
29 14 simprd XABX<B
30 29 adantr XABAX<B
31 13 22 24 28 30 xrlttrd XABAA+X2<B
32 elioo1 A*B*A+X2ABA+X2*A<A+X2A+X2<B
33 1 32 syl XABA+X2ABA+X2*A<A+X2A+X2<B
34 33 adantr XABAA+X2ABA+X2*A<A+X2A+X2<B
35 13 20 31 34 mpbir3and XABAA+X2AB
36 35 28 jca XABAA+X2ABA+X2<X
37 eleq1 y=A+X2yABA+X2AB
38 breq1 y=A+X2y<XA+X2<X
39 37 38 anbi12d y=A+X2yABy<XA+X2ABA+X2<X
40 36 39 imbitrrid y=A+X2XABAyABy<X
41 rspe yABy<XyABy<X
42 40 41 syl6 y=A+X2XABAyABy<X
43 6 7 42 spcimgf A+X2VyXABAyABy<X
44 5 43 ax-mp yXABAyABy<X
45 4 44 sylbir XABAyABy<X
46 45 expcom AXAByABy<X
47 simpl XABA=+∞XAB
48 oveq1 A=+∞AB=+∞B
49 48 eleq2d A=+∞XABX+∞B
50 49 adantl XABA=+∞XABX+∞B
51 pnfxr +∞*
52 elioo2 +∞*B*X+∞BX+∞<XX<B
53 51 52 mpan B*X+∞BX+∞<XX<B
54 53 biimpd B*X+∞BX+∞<XX<B
55 elioore X+∞BX
56 rexr XX*
57 pnfnlt X*¬+∞<X
58 56 57 syl X¬+∞<X
59 58 intn3an2d X¬X+∞<XX<B
60 55 59 syl X+∞B¬X+∞<XX<B
61 60 a1i B*X+∞B¬X+∞<XX<B
62 54 61 pm2.65d B*¬X+∞B
63 23 62 syl XAB¬X+∞B
64 63 pm2.21d XABX+∞ByABy<X
65 64 adantr XABA=+∞X+∞ByABy<X
66 50 65 sylbid XABA=+∞XAByABy<X
67 47 66 mpd XABA=+∞yABy<X
68 67 expcom A=+∞XAByABy<X
69 19.3v yXABA=−∞XABA=−∞
70 ovex X1V
71 nfcv _yX1
72 peano2rem XX1
73 8 72 syl XABX1
74 mnflt X1−∞<X1
75 73 74 syl XAB−∞<X1
76 73 rexrd XABX1*
77 8 ltm1d XABX1<X
78 76 21 23 77 29 xrlttrd XABX1<B
79 mnfxr −∞*
80 elioo2 −∞*B*X1−∞BX1−∞<X1X1<B
81 79 80 mpan B*X1−∞BX1−∞<X1X1<B
82 23 81 syl XABX1−∞BX1−∞<X1X1<B
83 73 75 78 82 mpbir3and XABX1−∞B
84 83 adantr XABA=−∞X1−∞B
85 oveq1 A=−∞AB=−∞B
86 85 eleq2d A=−∞X1ABX1−∞B
87 86 adantl XABA=−∞X1ABX1−∞B
88 84 87 mpbird XABA=−∞X1AB
89 77 adantr XABA=−∞X1<X
90 88 89 jca XABA=−∞X1ABX1<X
91 90 adantr XABA=−∞y=X1X1ABX1<X
92 eleq1 y=X1yABX1AB
93 breq1 y=X1y<XX1<X
94 92 93 anbi12d y=X1yABy<XX1ABX1<X
95 94 adantl XABA=−∞y=X1yABy<XX1ABX1<X
96 91 95 mpbird XABA=−∞y=X1yABy<X
97 96 41 syl XABA=−∞y=X1yABy<X
98 97 expcom y=X1XABA=−∞yABy<X
99 71 7 98 spcimgf X1VyXABA=−∞yABy<X
100 70 99 ax-mp yXABA=−∞yABy<X
101 69 100 sylbir XABA=−∞yABy<X
102 101 expcom A=−∞XAByABy<X
103 46 68 102 3jaoi AA=+∞A=−∞XAByABy<X
104 3 103 sylbi A*XAByABy<X
105 2 104 mpcom XAByABy<X