Metamath Proof Explorer


Theorem ioombl1lem3

Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses ioombl1.b B=A+∞
ioombl1.a φA
ioombl1.e φE
ioombl1.v φvol*E
ioombl1.c φC+
ioombl1.s S=seq1+absF
ioombl1.t T=seq1+absG
ioombl1.u U=seq1+absH
ioombl1.f1 φF:2
ioombl1.f2 φEran.F
ioombl1.f3 φsupranS*<vol*E+C
ioombl1.p P=1stFn
ioombl1.q Q=2ndFn
ioombl1.g G=nififPAAPQifPAAPQQ
ioombl1.h H=nPififPAAPQifPAAPQ
Assertion ioombl1lem3 φnabsGn+absHn=absFn

Proof

Step Hyp Ref Expression
1 ioombl1.b B=A+∞
2 ioombl1.a φA
3 ioombl1.e φE
4 ioombl1.v φvol*E
5 ioombl1.c φC+
6 ioombl1.s S=seq1+absF
7 ioombl1.t T=seq1+absG
8 ioombl1.u U=seq1+absH
9 ioombl1.f1 φF:2
10 ioombl1.f2 φEran.F
11 ioombl1.f3 φsupranS*<vol*E+C
12 ioombl1.p P=1stFn
13 ioombl1.q Q=2ndFn
14 ioombl1.g G=nififPAAPQifPAAPQQ
15 ioombl1.h H=nPififPAAPQifPAAPQ
16 ovolfcl F:2n1stFn2ndFn1stFn2ndFn
17 9 16 sylan φn1stFn2ndFn1stFn2ndFn
18 17 simp2d φn2ndFn
19 13 18 eqeltrid φnQ
20 19 recnd φnQ
21 2 adantr φnA
22 17 simp1d φn1stFn
23 12 22 eqeltrid φnP
24 21 23 ifcld φnifPAAP
25 24 19 ifcld φnififPAAPQifPAAPQ
26 25 recnd φnififPAAPQifPAAPQ
27 23 recnd φnP
28 20 26 27 npncand φnQififPAAPQifPAAPQ+ififPAAPQifPAAPQ-P=QP
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ioombl1lem1 φG:2H:2
30 29 simpld φG:2
31 eqid absG=absG
32 31 ovolfsval G:2nabsGn=2ndGn1stGn
33 30 32 sylan φnabsGn=2ndGn1stGn
34 simpr φnn
35 opex ififPAAPQifPAAPQQV
36 14 fvmpt2 nififPAAPQifPAAPQQVGn=ififPAAPQifPAAPQQ
37 34 35 36 sylancl φnGn=ififPAAPQifPAAPQQ
38 37 fveq2d φn2ndGn=2ndififPAAPQifPAAPQQ
39 op2ndg ififPAAPQifPAAPQQ2ndififPAAPQifPAAPQQ=Q
40 25 19 39 syl2anc φn2ndififPAAPQifPAAPQQ=Q
41 38 40 eqtrd φn2ndGn=Q
42 37 fveq2d φn1stGn=1stififPAAPQifPAAPQQ
43 op1stg ififPAAPQifPAAPQQ1stififPAAPQifPAAPQQ=ififPAAPQifPAAPQ
44 25 19 43 syl2anc φn1stififPAAPQifPAAPQQ=ififPAAPQifPAAPQ
45 42 44 eqtrd φn1stGn=ififPAAPQifPAAPQ
46 41 45 oveq12d φn2ndGn1stGn=QififPAAPQifPAAPQ
47 33 46 eqtrd φnabsGn=QififPAAPQifPAAPQ
48 29 simprd φH:2
49 eqid absH=absH
50 49 ovolfsval H:2nabsHn=2ndHn1stHn
51 48 50 sylan φnabsHn=2ndHn1stHn
52 opex PififPAAPQifPAAPQV
53 15 fvmpt2 nPififPAAPQifPAAPQVHn=PififPAAPQifPAAPQ
54 34 52 53 sylancl φnHn=PififPAAPQifPAAPQ
55 54 fveq2d φn2ndHn=2ndPififPAAPQifPAAPQ
56 op2ndg PififPAAPQifPAAPQ2ndPififPAAPQifPAAPQ=ififPAAPQifPAAPQ
57 23 25 56 syl2anc φn2ndPififPAAPQifPAAPQ=ififPAAPQifPAAPQ
58 55 57 eqtrd φn2ndHn=ififPAAPQifPAAPQ
59 54 fveq2d φn1stHn=1stPififPAAPQifPAAPQ
60 op1stg PififPAAPQifPAAPQ1stPififPAAPQifPAAPQ=P
61 23 25 60 syl2anc φn1stPififPAAPQifPAAPQ=P
62 59 61 eqtrd φn1stHn=P
63 58 62 oveq12d φn2ndHn1stHn=ififPAAPQifPAAPQP
64 51 63 eqtrd φnabsHn=ififPAAPQifPAAPQP
65 47 64 oveq12d φnabsGn+absHn=QififPAAPQifPAAPQ+ififPAAPQifPAAPQ-P
66 eqid absF=absF
67 66 ovolfsval F:2nabsFn=2ndFn1stFn
68 9 67 sylan φnabsFn=2ndFn1stFn
69 13 12 oveq12i QP=2ndFn1stFn
70 68 69 eqtr4di φnabsFn=QP
71 28 65 70 3eqtr4d φnabsGn+absHn=absFn