Metamath Proof Explorer


Theorem ip2subdi

Description: Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ipsubdir.m - ˙ = - W
ipsubdir.s S = - F
ip2subdi.p + ˙ = + F
ip2subdi.1 φ W PreHil
ip2subdi.2 φ A V
ip2subdi.3 φ B V
ip2subdi.4 φ C V
ip2subdi.5 φ D V
Assertion ip2subdi φ A - ˙ B , ˙ C - ˙ D = A , ˙ C + ˙ B , ˙ D S A , ˙ D + ˙ B , ˙ C

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ipsubdir.m - ˙ = - W
5 ipsubdir.s S = - F
6 ip2subdi.p + ˙ = + F
7 ip2subdi.1 φ W PreHil
8 ip2subdi.2 φ A V
9 ip2subdi.3 φ B V
10 ip2subdi.4 φ C V
11 ip2subdi.5 φ D V
12 eqid Base F = Base F
13 phllmod W PreHil W LMod
14 7 13 syl φ W LMod
15 1 lmodring W LMod F Ring
16 14 15 syl φ F Ring
17 ringabl F Ring F Abel
18 16 17 syl φ F Abel
19 1 2 3 12 ipcl W PreHil A V C V A , ˙ C Base F
20 7 8 10 19 syl3anc φ A , ˙ C Base F
21 1 2 3 12 ipcl W PreHil A V D V A , ˙ D Base F
22 7 8 11 21 syl3anc φ A , ˙ D Base F
23 1 2 3 12 ipcl W PreHil B V C V B , ˙ C Base F
24 7 9 10 23 syl3anc φ B , ˙ C Base F
25 12 6 5 18 20 22 24 ablsubsub4 φ A , ˙ C S A , ˙ D S B , ˙ C = A , ˙ C S A , ˙ D + ˙ B , ˙ C
26 25 oveq1d φ A , ˙ C S A , ˙ D S B , ˙ C + ˙ B , ˙ D = A , ˙ C S A , ˙ D + ˙ B , ˙ C + ˙ B , ˙ D
27 3 4 lmodvsubcl W LMod C V D V C - ˙ D V
28 14 10 11 27 syl3anc φ C - ˙ D V
29 1 2 3 4 5 ipsubdir W PreHil A V B V C - ˙ D V A - ˙ B , ˙ C - ˙ D = A , ˙ C - ˙ D S B , ˙ C - ˙ D
30 7 8 9 28 29 syl13anc φ A - ˙ B , ˙ C - ˙ D = A , ˙ C - ˙ D S B , ˙ C - ˙ D
31 1 2 3 4 5 ipsubdi W PreHil A V C V D V A , ˙ C - ˙ D = A , ˙ C S A , ˙ D
32 7 8 10 11 31 syl13anc φ A , ˙ C - ˙ D = A , ˙ C S A , ˙ D
33 1 2 3 4 5 ipsubdi W PreHil B V C V D V B , ˙ C - ˙ D = B , ˙ C S B , ˙ D
34 7 9 10 11 33 syl13anc φ B , ˙ C - ˙ D = B , ˙ C S B , ˙ D
35 32 34 oveq12d φ A , ˙ C - ˙ D S B , ˙ C - ˙ D = A , ˙ C S A , ˙ D S B , ˙ C S B , ˙ D
36 ringgrp F Ring F Grp
37 16 36 syl φ F Grp
38 12 5 grpsubcl F Grp A , ˙ C Base F A , ˙ D Base F A , ˙ C S A , ˙ D Base F
39 37 20 22 38 syl3anc φ A , ˙ C S A , ˙ D Base F
40 1 2 3 12 ipcl W PreHil B V D V B , ˙ D Base F
41 7 9 11 40 syl3anc φ B , ˙ D Base F
42 12 6 5 18 39 24 41 ablsubsub φ A , ˙ C S A , ˙ D S B , ˙ C S B , ˙ D = A , ˙ C S A , ˙ D S B , ˙ C + ˙ B , ˙ D
43 30 35 42 3eqtrd φ A - ˙ B , ˙ C - ˙ D = A , ˙ C S A , ˙ D S B , ˙ C + ˙ B , ˙ D
44 12 6 ringacl F Ring A , ˙ D Base F B , ˙ C Base F A , ˙ D + ˙ B , ˙ C Base F
45 16 22 24 44 syl3anc φ A , ˙ D + ˙ B , ˙ C Base F
46 12 6 5 abladdsub F Abel A , ˙ C Base F B , ˙ D Base F A , ˙ D + ˙ B , ˙ C Base F A , ˙ C + ˙ B , ˙ D S A , ˙ D + ˙ B , ˙ C = A , ˙ C S A , ˙ D + ˙ B , ˙ C + ˙ B , ˙ D
47 18 20 41 45 46 syl13anc φ A , ˙ C + ˙ B , ˙ D S A , ˙ D + ˙ B , ˙ C = A , ˙ C S A , ˙ D + ˙ B , ˙ C + ˙ B , ˙ D
48 26 43 47 3eqtr4d φ A - ˙ B , ˙ C - ˙ D = A , ˙ C + ˙ B , ˙ D S A , ˙ D + ˙ B , ˙ C