| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ip1i.1 |
|
| 2 |
|
ip1i.2 |
|
| 3 |
|
ip1i.4 |
|
| 4 |
|
ip1i.7 |
|
| 5 |
|
ip1i.9 |
|
| 6 |
|
ipasslem1.b |
|
| 7 |
|
nnrecre |
|
| 8 |
7
|
recnd |
|
| 9 |
5
|
phnvi |
|
| 10 |
1 3
|
nvscl |
|
| 11 |
9 10
|
mp3an1 |
|
| 12 |
8 11
|
sylan |
|
| 13 |
1 4
|
dipcl |
|
| 14 |
9 6 13
|
mp3an13 |
|
| 15 |
12 14
|
syl |
|
| 16 |
1 4
|
dipcl |
|
| 17 |
9 6 16
|
mp3an13 |
|
| 18 |
|
mulcl |
|
| 19 |
8 17 18
|
syl2an |
|
| 20 |
|
nncn |
|
| 21 |
20
|
adantr |
|
| 22 |
|
nnne0 |
|
| 23 |
22
|
adantr |
|
| 24 |
20 22
|
recidd |
|
| 25 |
24
|
oveq1d |
|
| 26 |
17
|
mullidd |
|
| 27 |
25 26
|
sylan9eq |
|
| 28 |
24
|
oveq1d |
|
| 29 |
1 3
|
nvsid |
|
| 30 |
9 29
|
mpan |
|
| 31 |
28 30
|
sylan9eq |
|
| 32 |
8
|
adantr |
|
| 33 |
|
simpr |
|
| 34 |
1 3
|
nvsass |
|
| 35 |
9 34
|
mpan |
|
| 36 |
21 32 33 35
|
syl3anc |
|
| 37 |
31 36
|
eqtr3d |
|
| 38 |
37
|
oveq1d |
|
| 39 |
|
nnnn0 |
|
| 40 |
39
|
adantr |
|
| 41 |
1 2 3 4 5 6
|
ipasslem1 |
|
| 42 |
40 12 41
|
syl2anc |
|
| 43 |
27 38 42
|
3eqtrd |
|
| 44 |
17
|
adantl |
|
| 45 |
21 32 44
|
mulassd |
|
| 46 |
43 45
|
eqtr3d |
|
| 47 |
15 19 21 23 46
|
mulcanad |
|