Metamath Proof Explorer


Theorem ipasslem4

Description: Lemma for ipassi . Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X=BaseSetU
ip1i.2 G=+vU
ip1i.4 S=𝑠OLDU
ip1i.7 P=𝑖OLDU
ip1i.9 UCPreHilOLD
ipasslem1.b BX
Assertion ipasslem4 NAX1NSAPB=1NAPB

Proof

Step Hyp Ref Expression
1 ip1i.1 X=BaseSetU
2 ip1i.2 G=+vU
3 ip1i.4 S=𝑠OLDU
4 ip1i.7 P=𝑖OLDU
5 ip1i.9 UCPreHilOLD
6 ipasslem1.b BX
7 nnrecre N1N
8 7 recnd N1N
9 5 phnvi UNrmCVec
10 1 3 nvscl UNrmCVec1NAX1NSAX
11 9 10 mp3an1 1NAX1NSAX
12 8 11 sylan NAX1NSAX
13 1 4 dipcl UNrmCVec1NSAXBX1NSAPB
14 9 6 13 mp3an13 1NSAX1NSAPB
15 12 14 syl NAX1NSAPB
16 1 4 dipcl UNrmCVecAXBXAPB
17 9 6 16 mp3an13 AXAPB
18 mulcl 1NAPB1NAPB
19 8 17 18 syl2an NAX1NAPB
20 nncn NN
21 20 adantr NAXN
22 nnne0 NN0
23 22 adantr NAXN0
24 20 22 recidd NN1N=1
25 24 oveq1d NN1NAPB=1APB
26 17 mullidd AX1APB=APB
27 25 26 sylan9eq NAXN1NAPB=APB
28 24 oveq1d NN1NSA=1SA
29 1 3 nvsid UNrmCVecAX1SA=A
30 9 29 mpan AX1SA=A
31 28 30 sylan9eq NAXN1NSA=A
32 8 adantr NAX1N
33 simpr NAXAX
34 1 3 nvsass UNrmCVecN1NAXN1NSA=NS1NSA
35 9 34 mpan N1NAXN1NSA=NS1NSA
36 21 32 33 35 syl3anc NAXN1NSA=NS1NSA
37 31 36 eqtr3d NAXA=NS1NSA
38 37 oveq1d NAXAPB=NS1NSAPB
39 nnnn0 NN0
40 39 adantr NAXN0
41 1 2 3 4 5 6 ipasslem1 N01NSAXNS1NSAPB=N1NSAPB
42 40 12 41 syl2anc NAXNS1NSAPB=N1NSAPB
43 27 38 42 3eqtrd NAXN1NAPB=N1NSAPB
44 17 adantl NAXAPB
45 21 32 44 mulassd NAXN1NAPB=N1NAPB
46 43 45 eqtr3d NAXN1NSAPB=N1NAPB
47 15 19 21 23 46 mulcanad NAX1NSAPB=1NAPB