Description: Lemma for ipassi . Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ip1i.1 | |
|
ip1i.2 | |
||
ip1i.4 | |
||
ip1i.7 | |
||
ip1i.9 | |
||
ipasslem1.b | |
||
Assertion | ipasslem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip1i.1 | |
|
2 | ip1i.2 | |
|
3 | ip1i.4 | |
|
4 | ip1i.7 | |
|
5 | ip1i.9 | |
|
6 | ipasslem1.b | |
|
7 | nnrecre | |
|
8 | 7 | recnd | |
9 | 5 | phnvi | |
10 | 1 3 | nvscl | |
11 | 9 10 | mp3an1 | |
12 | 8 11 | sylan | |
13 | 1 4 | dipcl | |
14 | 9 6 13 | mp3an13 | |
15 | 12 14 | syl | |
16 | 1 4 | dipcl | |
17 | 9 6 16 | mp3an13 | |
18 | mulcl | |
|
19 | 8 17 18 | syl2an | |
20 | nncn | |
|
21 | 20 | adantr | |
22 | nnne0 | |
|
23 | 22 | adantr | |
24 | 20 22 | recidd | |
25 | 24 | oveq1d | |
26 | 17 | mullidd | |
27 | 25 26 | sylan9eq | |
28 | 24 | oveq1d | |
29 | 1 3 | nvsid | |
30 | 9 29 | mpan | |
31 | 28 30 | sylan9eq | |
32 | 8 | adantr | |
33 | simpr | |
|
34 | 1 3 | nvsass | |
35 | 9 34 | mpan | |
36 | 21 32 33 35 | syl3anc | |
37 | 31 36 | eqtr3d | |
38 | 37 | oveq1d | |
39 | nnnn0 | |
|
40 | 39 | adantr | |
41 | 1 2 3 4 5 6 | ipasslem1 | |
42 | 40 12 41 | syl2anc | |
43 | 27 38 42 | 3eqtrd | |
44 | 17 | adantl | |
45 | 21 32 44 | mulassd | |
46 | 43 45 | eqtr3d | |
47 | 15 19 21 23 46 | mulcanad | |