Metamath Proof Explorer


Theorem iprodfac

Description: An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion iprodfac A 0 A ! = k 1 + 1 k A 1 + A k

Proof

Step Hyp Ref Expression
1 nnuz = 1
2 1zzd A 0 1
3 facne0 A 0 A ! 0
4 eqid x 1 + 1 x A 1 + A x = x 1 + 1 x A 1 + A x
5 4 faclim A 0 seq 1 × x 1 + 1 x A 1 + A x A !
6 oveq2 x = k 1 x = 1 k
7 6 oveq2d x = k 1 + 1 x = 1 + 1 k
8 7 oveq1d x = k 1 + 1 x A = 1 + 1 k A
9 oveq2 x = k A x = A k
10 9 oveq2d x = k 1 + A x = 1 + A k
11 8 10 oveq12d x = k 1 + 1 x A 1 + A x = 1 + 1 k A 1 + A k
12 ovex 1 + 1 k A 1 + A k V
13 11 4 12 fvmpt k x 1 + 1 x A 1 + A x k = 1 + 1 k A 1 + A k
14 13 adantl A 0 k x 1 + 1 x A 1 + A x k = 1 + 1 k A 1 + A k
15 1rp 1 +
16 15 a1i A 0 k 1 +
17 simpr A 0 k k
18 17 nnrpd A 0 k k +
19 18 rpreccld A 0 k 1 k +
20 16 19 rpaddcld A 0 k 1 + 1 k +
21 nn0z A 0 A
22 21 adantr A 0 k A
23 20 22 rpexpcld A 0 k 1 + 1 k A +
24 1cnd A 0 k 1
25 nn0nndivcl A 0 k A k
26 25 recnd A 0 k A k
27 24 26 addcomd A 0 k 1 + A k = A k + 1
28 nn0ge0div A 0 k 0 A k
29 25 28 ge0p1rpd A 0 k A k + 1 +
30 27 29 eqeltrd A 0 k 1 + A k +
31 23 30 rpdivcld A 0 k 1 + 1 k A 1 + A k +
32 31 rpcnd A 0 k 1 + 1 k A 1 + A k
33 1 2 3 5 14 32 iprodn0 A 0 k 1 + 1 k A 1 + A k = A !
34 33 eqcomd A 0 A ! = k 1 + 1 k A 1 + A k