Metamath Proof Explorer


Theorem iprodfac

Description: An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion iprodfac A0A!=k1+1kA1+Ak

Proof

Step Hyp Ref Expression
1 nnuz =1
2 1zzd A01
3 facne0 A0A!0
4 eqid x1+1xA1+Ax=x1+1xA1+Ax
5 4 faclim A0seq1×x1+1xA1+AxA!
6 oveq2 x=k1x=1k
7 6 oveq2d x=k1+1x=1+1k
8 7 oveq1d x=k1+1xA=1+1kA
9 oveq2 x=kAx=Ak
10 9 oveq2d x=k1+Ax=1+Ak
11 8 10 oveq12d x=k1+1xA1+Ax=1+1kA1+Ak
12 ovex 1+1kA1+AkV
13 11 4 12 fvmpt kx1+1xA1+Axk=1+1kA1+Ak
14 13 adantl A0kx1+1xA1+Axk=1+1kA1+Ak
15 1rp 1+
16 15 a1i A0k1+
17 simpr A0kk
18 17 nnrpd A0kk+
19 18 rpreccld A0k1k+
20 16 19 rpaddcld A0k1+1k+
21 nn0z A0A
22 21 adantr A0kA
23 20 22 rpexpcld A0k1+1kA+
24 1cnd A0k1
25 nn0nndivcl A0kAk
26 25 recnd A0kAk
27 24 26 addcomd A0k1+Ak=Ak+1
28 nn0ge0div A0k0Ak
29 25 28 ge0p1rpd A0kAk+1+
30 27 29 eqeltrd A0k1+Ak+
31 23 30 rpdivcld A0k1+1kA1+Ak+
32 31 rpcnd A0k1+1kA1+Ak
33 1 2 3 5 14 32 iprodn0 A0k1+1kA1+Ak=A!
34 33 eqcomd A0A!=k1+1kA1+Ak