Description: An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | iprodfac | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz | |
|
2 | 1zzd | |
|
3 | facne0 | |
|
4 | eqid | |
|
5 | 4 | faclim | |
6 | oveq2 | |
|
7 | 6 | oveq2d | |
8 | 7 | oveq1d | |
9 | oveq2 | |
|
10 | 9 | oveq2d | |
11 | 8 10 | oveq12d | |
12 | ovex | |
|
13 | 11 4 12 | fvmpt | |
14 | 13 | adantl | |
15 | 1rp | |
|
16 | 15 | a1i | |
17 | simpr | |
|
18 | 17 | nnrpd | |
19 | 18 | rpreccld | |
20 | 16 19 | rpaddcld | |
21 | nn0z | |
|
22 | 21 | adantr | |
23 | 20 22 | rpexpcld | |
24 | 1cnd | |
|
25 | nn0nndivcl | |
|
26 | 25 | recnd | |
27 | 24 26 | addcomd | |
28 | nn0ge0div | |
|
29 | 25 28 | ge0p1rpd | |
30 | 27 29 | eqeltrd | |
31 | 23 30 | rpdivcld | |
32 | 31 | rpcnd | |
33 | 1 2 3 5 14 32 | iprodn0 | |
34 | 33 | eqcomd | |