| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnuz |
|
| 2 |
|
1zzd |
|
| 3 |
|
facne0 |
|
| 4 |
|
eqid |
|
| 5 |
4
|
faclim |
|
| 6 |
|
oveq2 |
|
| 7 |
6
|
oveq2d |
|
| 8 |
7
|
oveq1d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
oveq2d |
|
| 11 |
8 10
|
oveq12d |
|
| 12 |
|
ovex |
|
| 13 |
11 4 12
|
fvmpt |
|
| 14 |
13
|
adantl |
|
| 15 |
|
1rp |
|
| 16 |
15
|
a1i |
|
| 17 |
|
simpr |
|
| 18 |
17
|
nnrpd |
|
| 19 |
18
|
rpreccld |
|
| 20 |
16 19
|
rpaddcld |
|
| 21 |
|
nn0z |
|
| 22 |
21
|
adantr |
|
| 23 |
20 22
|
rpexpcld |
|
| 24 |
|
1cnd |
|
| 25 |
|
nn0nndivcl |
|
| 26 |
25
|
recnd |
|
| 27 |
24 26
|
addcomd |
|
| 28 |
|
nn0ge0div |
|
| 29 |
25 28
|
ge0p1rpd |
|
| 30 |
27 29
|
eqeltrd |
|
| 31 |
23 30
|
rpdivcld |
|
| 32 |
31
|
rpcnd |
|
| 33 |
1 2 3 5 14 32
|
iprodn0 |
|
| 34 |
33
|
eqcomd |
|