Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isdomn3.b | |
|
isdomn3.z | |
||
isdomn3.u | |
||
Assertion | isdomn3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdomn3.b | |
|
2 | isdomn3.z | |
|
3 | isdomn3.u | |
|
4 | eqid | |
|
5 | 1 4 2 | isdomn | |
6 | eqid | |
|
7 | 6 2 | isnzr | |
8 | 7 | anbi1i | |
9 | anass | |
|
10 | 8 9 | bitri | |
11 | 1 6 | ringidcl | |
12 | eldifsn | |
|
13 | 12 | baibr | |
14 | 11 13 | syl | |
15 | 1 4 | ringcl | |
16 | 15 | 3expb | |
17 | 16 | biantrurd | |
18 | eldifsn | |
|
19 | 17 18 | bitr4di | |
20 | 19 | imbi2d | |
21 | 20 | 2ralbidva | |
22 | con34b | |
|
23 | neanior | |
|
24 | df-ne | |
|
25 | 23 24 | imbi12i | |
26 | 22 25 | bitr4i | |
27 | 26 | 2ralbii | |
28 | impexp | |
|
29 | an4 | |
|
30 | eldifsn | |
|
31 | eldifsn | |
|
32 | 30 31 | anbi12i | |
33 | 29 32 | bitr4i | |
34 | 33 | imbi1i | |
35 | 28 34 | bitr3i | |
36 | 35 | 2albii | |
37 | r2al | |
|
38 | r2al | |
|
39 | 36 37 38 | 3bitr4ri | |
40 | 21 27 39 | 3bitr4g | |
41 | 14 40 | anbi12d | |
42 | 3 | ringmgp | |
43 | 3 1 | mgpbas | |
44 | 3 6 | ringidval | |
45 | 3 4 | mgpplusg | |
46 | 43 44 45 | issubm | |
47 | 3anass | |
|
48 | 46 47 | bitrdi | |
49 | difss | |
|
50 | 49 | biantrur | |
51 | 48 50 | bitr4di | |
52 | 42 51 | syl | |
53 | 41 52 | bitr4d | |
54 | 53 | pm5.32i | |
55 | 10 54 | bitri | |
56 | 5 55 | bitri | |