Metamath Proof Explorer


Theorem isdomn3

Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015)

Ref Expression
Hypotheses isdomn3.b B=BaseR
isdomn3.z 0˙=0R
isdomn3.u U=mulGrpR
Assertion isdomn3 RDomnRRingB0˙SubMndU

Proof

Step Hyp Ref Expression
1 isdomn3.b B=BaseR
2 isdomn3.z 0˙=0R
3 isdomn3.u U=mulGrpR
4 eqid R=R
5 1 4 2 isdomn RDomnRNzRingxByBxRy=0˙x=0˙y=0˙
6 eqid 1R=1R
7 6 2 isnzr RNzRingRRing1R0˙
8 7 anbi1i RNzRingxByBxRy=0˙x=0˙y=0˙RRing1R0˙xByBxRy=0˙x=0˙y=0˙
9 anass RRing1R0˙xByBxRy=0˙x=0˙y=0˙RRing1R0˙xByBxRy=0˙x=0˙y=0˙
10 8 9 bitri RNzRingxByBxRy=0˙x=0˙y=0˙RRing1R0˙xByBxRy=0˙x=0˙y=0˙
11 1 6 ringidcl RRing1RB
12 eldifsn 1RB0˙1RB1R0˙
13 12 baibr 1RB1R0˙1RB0˙
14 11 13 syl RRing1R0˙1RB0˙
15 1 4 ringcl RRingxByBxRyB
16 15 3expb RRingxByBxRyB
17 16 biantrurd RRingxByBxRy0˙xRyBxRy0˙
18 eldifsn xRyB0˙xRyBxRy0˙
19 17 18 bitr4di RRingxByBxRy0˙xRyB0˙
20 19 imbi2d RRingxByBx0˙y0˙xRy0˙x0˙y0˙xRyB0˙
21 20 2ralbidva RRingxByBx0˙y0˙xRy0˙xByBx0˙y0˙xRyB0˙
22 con34b xRy=0˙x=0˙y=0˙¬x=0˙y=0˙¬xRy=0˙
23 neanior x0˙y0˙¬x=0˙y=0˙
24 df-ne xRy0˙¬xRy=0˙
25 23 24 imbi12i x0˙y0˙xRy0˙¬x=0˙y=0˙¬xRy=0˙
26 22 25 bitr4i xRy=0˙x=0˙y=0˙x0˙y0˙xRy0˙
27 26 2ralbii xByBxRy=0˙x=0˙y=0˙xByBx0˙y0˙xRy0˙
28 impexp xByBx0˙y0˙xRyB0˙xByBx0˙y0˙xRyB0˙
29 an4 xByBx0˙y0˙xBx0˙yBy0˙
30 eldifsn xB0˙xBx0˙
31 eldifsn yB0˙yBy0˙
32 30 31 anbi12i xB0˙yB0˙xBx0˙yBy0˙
33 29 32 bitr4i xByBx0˙y0˙xB0˙yB0˙
34 33 imbi1i xByBx0˙y0˙xRyB0˙xB0˙yB0˙xRyB0˙
35 28 34 bitr3i xByBx0˙y0˙xRyB0˙xB0˙yB0˙xRyB0˙
36 35 2albii xyxByBx0˙y0˙xRyB0˙xyxB0˙yB0˙xRyB0˙
37 r2al xByBx0˙y0˙xRyB0˙xyxByBx0˙y0˙xRyB0˙
38 r2al xB0˙yB0˙xRyB0˙xyxB0˙yB0˙xRyB0˙
39 36 37 38 3bitr4ri xB0˙yB0˙xRyB0˙xByBx0˙y0˙xRyB0˙
40 21 27 39 3bitr4g RRingxByBxRy=0˙x=0˙y=0˙xB0˙yB0˙xRyB0˙
41 14 40 anbi12d RRing1R0˙xByBxRy=0˙x=0˙y=0˙1RB0˙xB0˙yB0˙xRyB0˙
42 3 ringmgp RRingUMnd
43 3 1 mgpbas B=BaseU
44 3 6 ringidval 1R=0U
45 3 4 mgpplusg R=+U
46 43 44 45 issubm UMndB0˙SubMndUB0˙B1RB0˙xB0˙yB0˙xRyB0˙
47 3anass B0˙B1RB0˙xB0˙yB0˙xRyB0˙B0˙B1RB0˙xB0˙yB0˙xRyB0˙
48 46 47 bitrdi UMndB0˙SubMndUB0˙B1RB0˙xB0˙yB0˙xRyB0˙
49 difss B0˙B
50 49 biantrur 1RB0˙xB0˙yB0˙xRyB0˙B0˙B1RB0˙xB0˙yB0˙xRyB0˙
51 48 50 bitr4di UMndB0˙SubMndU1RB0˙xB0˙yB0˙xRyB0˙
52 42 51 syl RRingB0˙SubMndU1RB0˙xB0˙yB0˙xRyB0˙
53 41 52 bitr4d RRing1R0˙xByBxRy=0˙x=0˙y=0˙B0˙SubMndU
54 53 pm5.32i RRing1R0˙xByBxRy=0˙x=0˙y=0˙RRingB0˙SubMndU
55 10 54 bitri RNzRingxByBxRy=0˙x=0˙y=0˙RRingB0˙SubMndU
56 5 55 bitri RDomnRRingB0˙SubMndU