Description: Deduce that an operation is a functor of categories. (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfunc.b | |
|
isfunc.c | |
||
isfunc.h | |
||
isfunc.j | |
||
isfunc.1 | |
||
isfunc.i | |
||
isfunc.x | |
||
isfunc.o | |
||
isfunc.d | |
||
isfunc.e | |
||
isfuncd.1 | |
||
isfuncd.2 | |
||
isfuncd.3 | |
||
isfuncd.4 | |
||
isfuncd.5 | |
||
Assertion | isfuncd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfunc.b | |
|
2 | isfunc.c | |
|
3 | isfunc.h | |
|
4 | isfunc.j | |
|
5 | isfunc.1 | |
|
6 | isfunc.i | |
|
7 | isfunc.x | |
|
8 | isfunc.o | |
|
9 | isfunc.d | |
|
10 | isfunc.e | |
|
11 | isfuncd.1 | |
|
12 | isfuncd.2 | |
|
13 | isfuncd.3 | |
|
14 | isfuncd.4 | |
|
15 | isfuncd.5 | |
|
16 | 1 | fvexi | |
17 | 16 16 | xpex | |
18 | fnex | |
|
19 | 12 17 18 | sylancl | |
20 | ovex | |
|
21 | ovex | |
|
22 | 20 21 | elmap | |
23 | 13 22 | sylibr | |
24 | 23 | ralrimivva | |
25 | fveq2 | |
|
26 | df-ov | |
|
27 | 25 26 | eqtr4di | |
28 | vex | |
|
29 | vex | |
|
30 | 28 29 | op1std | |
31 | 30 | fveq2d | |
32 | 28 29 | op2ndd | |
33 | 32 | fveq2d | |
34 | 31 33 | oveq12d | |
35 | fveq2 | |
|
36 | df-ov | |
|
37 | 35 36 | eqtr4di | |
38 | 34 37 | oveq12d | |
39 | 27 38 | eleq12d | |
40 | 39 | ralxp | |
41 | 24 40 | sylibr | |
42 | elixp2 | |
|
43 | 19 12 41 42 | syl3anbrc | |
44 | 15 | 3expia | |
45 | 44 | 3exp2 | |
46 | 45 | imp43 | |
47 | 46 | ralrimivv | |
48 | 47 | ralrimivva | |
49 | 14 48 | jca | |
50 | 49 | ralrimiva | |
51 | 1 2 3 4 5 6 7 8 9 10 | isfunc | |
52 | 11 43 50 51 | mpbir3and | |