Metamath Proof Explorer


Theorem isfuncd

Description: Deduce that an operation is a functor of categories. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses isfunc.b B=BaseD
isfunc.c C=BaseE
isfunc.h H=HomD
isfunc.j J=HomE
isfunc.1 1˙=IdD
isfunc.i I=IdE
isfunc.x ·˙=compD
isfunc.o O=compE
isfunc.d φDCat
isfunc.e φECat
isfuncd.1 φF:BC
isfuncd.2 φGFnB×B
isfuncd.3 φxByBxGy:xHyFxJFy
isfuncd.4 φxBxGx1˙x=IFx
isfuncd.5 φxByBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
Assertion isfuncd φFDFuncEG

Proof

Step Hyp Ref Expression
1 isfunc.b B=BaseD
2 isfunc.c C=BaseE
3 isfunc.h H=HomD
4 isfunc.j J=HomE
5 isfunc.1 1˙=IdD
6 isfunc.i I=IdE
7 isfunc.x ·˙=compD
8 isfunc.o O=compE
9 isfunc.d φDCat
10 isfunc.e φECat
11 isfuncd.1 φF:BC
12 isfuncd.2 φGFnB×B
13 isfuncd.3 φxByBxGy:xHyFxJFy
14 isfuncd.4 φxBxGx1˙x=IFx
15 isfuncd.5 φxByBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
16 1 fvexi BV
17 16 16 xpex B×BV
18 fnex GFnB×BB×BVGV
19 12 17 18 sylancl φGV
20 ovex FxJFyV
21 ovex xHyV
22 20 21 elmap xGyFxJFyxHyxGy:xHyFxJFy
23 13 22 sylibr φxByBxGyFxJFyxHy
24 23 ralrimivva φxByBxGyFxJFyxHy
25 fveq2 z=xyGz=Gxy
26 df-ov xGy=Gxy
27 25 26 eqtr4di z=xyGz=xGy
28 vex xV
29 vex yV
30 28 29 op1std z=xy1stz=x
31 30 fveq2d z=xyF1stz=Fx
32 28 29 op2ndd z=xy2ndz=y
33 32 fveq2d z=xyF2ndz=Fy
34 31 33 oveq12d z=xyF1stzJF2ndz=FxJFy
35 fveq2 z=xyHz=Hxy
36 df-ov xHy=Hxy
37 35 36 eqtr4di z=xyHz=xHy
38 34 37 oveq12d z=xyF1stzJF2ndzHz=FxJFyxHy
39 27 38 eleq12d z=xyGzF1stzJF2ndzHzxGyFxJFyxHy
40 39 ralxp zB×BGzF1stzJF2ndzHzxByBxGyFxJFyxHy
41 24 40 sylibr φzB×BGzF1stzJF2ndzHz
42 elixp2 GzB×BF1stzJF2ndzHzGVGFnB×BzB×BGzF1stzJF2ndzHz
43 19 12 41 42 syl3anbrc φGzB×BF1stzJF2ndzHz
44 15 3expia φxByBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
45 44 3exp2 φxByBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
46 45 imp43 φxByBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
47 46 ralrimivv φxByBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
48 47 ralrimivva φxByBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
49 14 48 jca φxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
50 49 ralrimiva φxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
51 1 2 3 4 5 6 7 8 9 10 isfunc φFDFuncEGF:BCGzB×BF1stzJF2ndzHzxBxGx1˙x=IFxyBzBmxHynyHzxGznxy·˙zm=yGznFxFyOFzxGym
52 11 43 50 51 mpbir3and φFDFuncEG