Metamath Proof Explorer


Theorem islbs

Description: The predicate " B is a basis for the left module or vector space W ". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014) (Revised by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypotheses islbs.v V=BaseW
islbs.f F=ScalarW
islbs.s ·˙=W
islbs.k K=BaseF
islbs.j J=LBasisW
islbs.n N=LSpanW
islbs.z 0˙=0F
Assertion islbs WXBJBVNB=VxByK0˙¬y·˙xNBx

Proof

Step Hyp Ref Expression
1 islbs.v V=BaseW
2 islbs.f F=ScalarW
3 islbs.s ·˙=W
4 islbs.k K=BaseF
5 islbs.j J=LBasisW
6 islbs.n N=LSpanW
7 islbs.z 0˙=0F
8 elex WXWV
9 fveq2 w=WBasew=BaseW
10 9 1 eqtr4di w=WBasew=V
11 10 pweqd w=W𝒫Basew=𝒫V
12 fvexd w=WLSpanwV
13 fveq2 w=WLSpanw=LSpanW
14 13 6 eqtr4di w=WLSpanw=N
15 fvexd w=Wn=NScalarwV
16 fveq2 w=WScalarw=ScalarW
17 16 adantr w=Wn=NScalarw=ScalarW
18 17 2 eqtr4di w=Wn=NScalarw=F
19 simplr w=Wn=Nf=Fn=N
20 19 fveq1d w=Wn=Nf=Fnb=Nb
21 10 ad2antrr w=Wn=Nf=FBasew=V
22 20 21 eqeq12d w=Wn=Nf=Fnb=BasewNb=V
23 simpr w=Wn=Nf=Ff=F
24 23 fveq2d w=Wn=Nf=FBasef=BaseF
25 24 4 eqtr4di w=Wn=Nf=FBasef=K
26 23 fveq2d w=Wn=Nf=F0f=0F
27 26 7 eqtr4di w=Wn=Nf=F0f=0˙
28 27 sneqd w=Wn=Nf=F0f=0˙
29 25 28 difeq12d w=Wn=Nf=FBasef0f=K0˙
30 fveq2 w=Ww=W
31 30 3 eqtr4di w=Ww=·˙
32 31 ad2antrr w=Wn=Nf=Fw=·˙
33 32 oveqd w=Wn=Nf=Fywx=y·˙x
34 19 fveq1d w=Wn=Nf=Fnbx=Nbx
35 33 34 eleq12d w=Wn=Nf=Fywxnbxy·˙xNbx
36 35 notbid w=Wn=Nf=F¬ywxnbx¬y·˙xNbx
37 29 36 raleqbidv w=Wn=Nf=FyBasef0f¬ywxnbxyK0˙¬y·˙xNbx
38 37 ralbidv w=Wn=Nf=FxbyBasef0f¬ywxnbxxbyK0˙¬y·˙xNbx
39 22 38 anbi12d w=Wn=Nf=Fnb=BasewxbyBasef0f¬ywxnbxNb=VxbyK0˙¬y·˙xNbx
40 15 18 39 sbcied2 w=Wn=N[˙Scalarw/f]˙nb=BasewxbyBasef0f¬ywxnbxNb=VxbyK0˙¬y·˙xNbx
41 12 14 40 sbcied2 w=W[˙LSpanw/n]˙[˙Scalarw/f]˙nb=BasewxbyBasef0f¬ywxnbxNb=VxbyK0˙¬y·˙xNbx
42 11 41 rabeqbidv w=Wb𝒫Basew|[˙LSpanw/n]˙[˙Scalarw/f]˙nb=BasewxbyBasef0f¬ywxnbx=b𝒫V|Nb=VxbyK0˙¬y·˙xNbx
43 df-lbs LBasis=wVb𝒫Basew|[˙LSpanw/n]˙[˙Scalarw/f]˙nb=BasewxbyBasef0f¬ywxnbx
44 1 fvexi VV
45 44 pwex 𝒫VV
46 45 rabex b𝒫V|Nb=VxbyK0˙¬y·˙xNbxV
47 42 43 46 fvmpt WVLBasisW=b𝒫V|Nb=VxbyK0˙¬y·˙xNbx
48 5 47 eqtrid WVJ=b𝒫V|Nb=VxbyK0˙¬y·˙xNbx
49 8 48 syl WXJ=b𝒫V|Nb=VxbyK0˙¬y·˙xNbx
50 49 eleq2d WXBJBb𝒫V|Nb=VxbyK0˙¬y·˙xNbx
51 44 elpw2 B𝒫VBV
52 51 anbi1i B𝒫VNB=VxByK0˙¬y·˙xNBxBVNB=VxByK0˙¬y·˙xNBx
53 fveqeq2 b=BNb=VNB=V
54 difeq1 b=Bbx=Bx
55 54 fveq2d b=BNbx=NBx
56 55 eleq2d b=By·˙xNbxy·˙xNBx
57 56 notbid b=B¬y·˙xNbx¬y·˙xNBx
58 57 ralbidv b=ByK0˙¬y·˙xNbxyK0˙¬y·˙xNBx
59 58 raleqbi1dv b=BxbyK0˙¬y·˙xNbxxByK0˙¬y·˙xNBx
60 53 59 anbi12d b=BNb=VxbyK0˙¬y·˙xNbxNB=VxByK0˙¬y·˙xNBx
61 60 elrab Bb𝒫V|Nb=VxbyK0˙¬y·˙xNbxB𝒫VNB=VxByK0˙¬y·˙xNBx
62 3anass BVNB=VxByK0˙¬y·˙xNBxBVNB=VxByK0˙¬y·˙xNBx
63 52 61 62 3bitr4i Bb𝒫V|Nb=VxbyK0˙¬y·˙xNbxBVNB=VxByK0˙¬y·˙xNBx
64 50 63 bitrdi WXBJBVNB=VxByK0˙¬y·˙xNBx