Metamath Proof Explorer


Theorem islbs

Description: The predicate " B is a basis for the left module or vector space W ". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014) (Revised by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypotheses islbs.v V = Base W
islbs.f F = Scalar W
islbs.s · ˙ = W
islbs.k K = Base F
islbs.j J = LBasis W
islbs.n N = LSpan W
islbs.z 0 ˙ = 0 F
Assertion islbs W X B J B V N B = V x B y K 0 ˙ ¬ y · ˙ x N B x

Proof

Step Hyp Ref Expression
1 islbs.v V = Base W
2 islbs.f F = Scalar W
3 islbs.s · ˙ = W
4 islbs.k K = Base F
5 islbs.j J = LBasis W
6 islbs.n N = LSpan W
7 islbs.z 0 ˙ = 0 F
8 elex W X W V
9 fveq2 w = W Base w = Base W
10 9 1 eqtr4di w = W Base w = V
11 10 pweqd w = W 𝒫 Base w = 𝒫 V
12 fvexd w = W LSpan w V
13 fveq2 w = W LSpan w = LSpan W
14 13 6 eqtr4di w = W LSpan w = N
15 fvexd w = W n = N Scalar w V
16 fveq2 w = W Scalar w = Scalar W
17 16 adantr w = W n = N Scalar w = Scalar W
18 17 2 eqtr4di w = W n = N Scalar w = F
19 simplr w = W n = N f = F n = N
20 19 fveq1d w = W n = N f = F n b = N b
21 10 ad2antrr w = W n = N f = F Base w = V
22 20 21 eqeq12d w = W n = N f = F n b = Base w N b = V
23 simpr w = W n = N f = F f = F
24 23 fveq2d w = W n = N f = F Base f = Base F
25 24 4 eqtr4di w = W n = N f = F Base f = K
26 23 fveq2d w = W n = N f = F 0 f = 0 F
27 26 7 eqtr4di w = W n = N f = F 0 f = 0 ˙
28 27 sneqd w = W n = N f = F 0 f = 0 ˙
29 25 28 difeq12d w = W n = N f = F Base f 0 f = K 0 ˙
30 fveq2 w = W w = W
31 30 3 eqtr4di w = W w = · ˙
32 31 ad2antrr w = W n = N f = F w = · ˙
33 32 oveqd w = W n = N f = F y w x = y · ˙ x
34 19 fveq1d w = W n = N f = F n b x = N b x
35 33 34 eleq12d w = W n = N f = F y w x n b x y · ˙ x N b x
36 35 notbid w = W n = N f = F ¬ y w x n b x ¬ y · ˙ x N b x
37 29 36 raleqbidv w = W n = N f = F y Base f 0 f ¬ y w x n b x y K 0 ˙ ¬ y · ˙ x N b x
38 37 ralbidv w = W n = N f = F x b y Base f 0 f ¬ y w x n b x x b y K 0 ˙ ¬ y · ˙ x N b x
39 22 38 anbi12d w = W n = N f = F n b = Base w x b y Base f 0 f ¬ y w x n b x N b = V x b y K 0 ˙ ¬ y · ˙ x N b x
40 15 18 39 sbcied2 w = W n = N [˙ Scalar w / f]˙ n b = Base w x b y Base f 0 f ¬ y w x n b x N b = V x b y K 0 ˙ ¬ y · ˙ x N b x
41 12 14 40 sbcied2 w = W [˙ LSpan w / n]˙ [˙ Scalar w / f]˙ n b = Base w x b y Base f 0 f ¬ y w x n b x N b = V x b y K 0 ˙ ¬ y · ˙ x N b x
42 11 41 rabeqbidv w = W b 𝒫 Base w | [˙ LSpan w / n]˙ [˙ Scalar w / f]˙ n b = Base w x b y Base f 0 f ¬ y w x n b x = b 𝒫 V | N b = V x b y K 0 ˙ ¬ y · ˙ x N b x
43 df-lbs LBasis = w V b 𝒫 Base w | [˙ LSpan w / n]˙ [˙ Scalar w / f]˙ n b = Base w x b y Base f 0 f ¬ y w x n b x
44 1 fvexi V V
45 44 pwex 𝒫 V V
46 45 rabex b 𝒫 V | N b = V x b y K 0 ˙ ¬ y · ˙ x N b x V
47 42 43 46 fvmpt W V LBasis W = b 𝒫 V | N b = V x b y K 0 ˙ ¬ y · ˙ x N b x
48 5 47 syl5eq W V J = b 𝒫 V | N b = V x b y K 0 ˙ ¬ y · ˙ x N b x
49 8 48 syl W X J = b 𝒫 V | N b = V x b y K 0 ˙ ¬ y · ˙ x N b x
50 49 eleq2d W X B J B b 𝒫 V | N b = V x b y K 0 ˙ ¬ y · ˙ x N b x
51 44 elpw2 B 𝒫 V B V
52 51 anbi1i B 𝒫 V N B = V x B y K 0 ˙ ¬ y · ˙ x N B x B V N B = V x B y K 0 ˙ ¬ y · ˙ x N B x
53 fveqeq2 b = B N b = V N B = V
54 difeq1 b = B b x = B x
55 54 fveq2d b = B N b x = N B x
56 55 eleq2d b = B y · ˙ x N b x y · ˙ x N B x
57 56 notbid b = B ¬ y · ˙ x N b x ¬ y · ˙ x N B x
58 57 ralbidv b = B y K 0 ˙ ¬ y · ˙ x N b x y K 0 ˙ ¬ y · ˙ x N B x
59 58 raleqbi1dv b = B x b y K 0 ˙ ¬ y · ˙ x N b x x B y K 0 ˙ ¬ y · ˙ x N B x
60 53 59 anbi12d b = B N b = V x b y K 0 ˙ ¬ y · ˙ x N b x N B = V x B y K 0 ˙ ¬ y · ˙ x N B x
61 60 elrab B b 𝒫 V | N b = V x b y K 0 ˙ ¬ y · ˙ x N b x B 𝒫 V N B = V x B y K 0 ˙ ¬ y · ˙ x N B x
62 3anass B V N B = V x B y K 0 ˙ ¬ y · ˙ x N B x B V N B = V x B y K 0 ˙ ¬ y · ˙ x N B x
63 52 61 62 3bitr4i B b 𝒫 V | N b = V x b y K 0 ˙ ¬ y · ˙ x N b x B V N B = V x B y K 0 ˙ ¬ y · ˙ x N B x
64 50 63 bitrdi W X B J B V N B = V x B y K 0 ˙ ¬ y · ˙ x N B x