Metamath Proof Explorer


Theorem islmodfg

Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses islmodfg.b B=BaseW
islmodfg.n N=LSpanW
Assertion islmodfg WLModWLFinGenb𝒫BbFinNb=B

Proof

Step Hyp Ref Expression
1 islmodfg.b B=BaseW
2 islmodfg.n N=LSpanW
3 df-lfig LFinGen=aLMod|BaseaLSpana𝒫BaseaFin
4 3 eleq2i WLFinGenWaLMod|BaseaLSpana𝒫BaseaFin
5 fveq2 a=WBasea=BaseW
6 fveq2 a=WLSpana=LSpanW
7 6 2 eqtr4di a=WLSpana=N
8 5 pweqd a=W𝒫Basea=𝒫BaseW
9 8 ineq1d a=W𝒫BaseaFin=𝒫BaseWFin
10 7 9 imaeq12d a=WLSpana𝒫BaseaFin=N𝒫BaseWFin
11 5 10 eleq12d a=WBaseaLSpana𝒫BaseaFinBaseWN𝒫BaseWFin
12 11 elrab3 WLModWaLMod|BaseaLSpana𝒫BaseaFinBaseWN𝒫BaseWFin
13 4 12 bitrid WLModWLFinGenBaseWN𝒫BaseWFin
14 eqid BaseW=BaseW
15 eqid LSubSpW=LSubSpW
16 14 15 2 lspf WLModN:𝒫BaseWLSubSpW
17 16 ffnd WLModNFn𝒫BaseW
18 inss1 𝒫BaseWFin𝒫BaseW
19 fvelimab NFn𝒫BaseW𝒫BaseWFin𝒫BaseWBaseWN𝒫BaseWFinb𝒫BaseWFinNb=BaseW
20 17 18 19 sylancl WLModBaseWN𝒫BaseWFinb𝒫BaseWFinNb=BaseW
21 elin b𝒫BaseWFinb𝒫BaseWbFin
22 1 eqcomi BaseW=B
23 22 pweqi 𝒫BaseW=𝒫B
24 23 eleq2i b𝒫BaseWb𝒫B
25 24 anbi1i b𝒫BaseWbFinb𝒫BbFin
26 21 25 bitri b𝒫BaseWFinb𝒫BbFin
27 22 eqeq2i Nb=BaseWNb=B
28 26 27 anbi12i b𝒫BaseWFinNb=BaseWb𝒫BbFinNb=B
29 anass b𝒫BbFinNb=Bb𝒫BbFinNb=B
30 28 29 bitri b𝒫BaseWFinNb=BaseWb𝒫BbFinNb=B
31 30 rexbii2 b𝒫BaseWFinNb=BaseWb𝒫BbFinNb=B
32 20 31 bitrdi WLModBaseWN𝒫BaseWFinb𝒫BbFinNb=B
33 13 32 bitrd WLModWLFinGenb𝒫BbFinNb=B