Metamath Proof Explorer


Theorem isnat

Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natfval.1 N=CNatD
natfval.b B=BaseC
natfval.h H=HomC
natfval.j J=HomD
natfval.o ·˙=compD
isnat.f φFCFuncDG
isnat.g φKCFuncDL
Assertion isnat φAFGNKLAxBFxJKxxByBhxHyAyFxFy·˙KyxGyh=xLyhFxKx·˙KyAx

Proof

Step Hyp Ref Expression
1 natfval.1 N=CNatD
2 natfval.b B=BaseC
3 natfval.h H=HomC
4 natfval.j J=HomD
5 natfval.o ·˙=compD
6 isnat.f φFCFuncDG
7 isnat.g φKCFuncDL
8 1 2 3 4 5 natfval N=fCFuncD,gCFuncD1stf/r1stg/saxBrxJsx|xByBhxHyayrxry·˙syx2ndfyh=x2ndgyhrxsx·˙syax
9 8 a1i φN=fCFuncD,gCFuncD1stf/r1stg/saxBrxJsx|xByBhxHyayrxry·˙syx2ndfyh=x2ndgyhrxsx·˙syax
10 fvexd φf=FGg=KL1stfV
11 simprl φf=FGg=KLf=FG
12 11 fveq2d φf=FGg=KL1stf=1stFG
13 relfunc RelCFuncD
14 brrelex12 RelCFuncDFCFuncDGFVGV
15 13 6 14 sylancr φFVGV
16 op1stg FVGV1stFG=F
17 15 16 syl φ1stFG=F
18 17 adantr φf=FGg=KL1stFG=F
19 12 18 eqtrd φf=FGg=KL1stf=F
20 fvexd φf=FGg=KLr=F1stgV
21 simplrr φf=FGg=KLr=Fg=KL
22 21 fveq2d φf=FGg=KLr=F1stg=1stKL
23 brrelex12 RelCFuncDKCFuncDLKVLV
24 13 7 23 sylancr φKVLV
25 op1stg KVLV1stKL=K
26 24 25 syl φ1stKL=K
27 26 ad2antrr φf=FGg=KLr=F1stKL=K
28 22 27 eqtrd φf=FGg=KLr=F1stg=K
29 simplr φf=FGg=KLr=Fs=Kr=F
30 29 fveq1d φf=FGg=KLr=Fs=Krx=Fx
31 simpr φf=FGg=KLr=Fs=Ks=K
32 31 fveq1d φf=FGg=KLr=Fs=Ksx=Kx
33 30 32 oveq12d φf=FGg=KLr=Fs=KrxJsx=FxJKx
34 33 ixpeq2dv φf=FGg=KLr=Fs=KxBrxJsx=xBFxJKx
35 29 fveq1d φf=FGg=KLr=Fs=Kry=Fy
36 30 35 opeq12d φf=FGg=KLr=Fs=Krxry=FxFy
37 31 fveq1d φf=FGg=KLr=Fs=Ksy=Ky
38 36 37 oveq12d φf=FGg=KLr=Fs=Krxry·˙sy=FxFy·˙Ky
39 eqidd φf=FGg=KLr=Fs=Kay=ay
40 11 ad2antrr φf=FGg=KLr=Fs=Kf=FG
41 40 fveq2d φf=FGg=KLr=Fs=K2ndf=2ndFG
42 op2ndg FVGV2ndFG=G
43 15 42 syl φ2ndFG=G
44 43 ad3antrrr φf=FGg=KLr=Fs=K2ndFG=G
45 41 44 eqtrd φf=FGg=KLr=Fs=K2ndf=G
46 45 oveqd φf=FGg=KLr=Fs=Kx2ndfy=xGy
47 46 fveq1d φf=FGg=KLr=Fs=Kx2ndfyh=xGyh
48 38 39 47 oveq123d φf=FGg=KLr=Fs=Kayrxry·˙syx2ndfyh=ayFxFy·˙KyxGyh
49 30 32 opeq12d φf=FGg=KLr=Fs=Krxsx=FxKx
50 49 37 oveq12d φf=FGg=KLr=Fs=Krxsx·˙sy=FxKx·˙Ky
51 21 adantr φf=FGg=KLr=Fs=Kg=KL
52 51 fveq2d φf=FGg=KLr=Fs=K2ndg=2ndKL
53 op2ndg KVLV2ndKL=L
54 24 53 syl φ2ndKL=L
55 54 ad3antrrr φf=FGg=KLr=Fs=K2ndKL=L
56 52 55 eqtrd φf=FGg=KLr=Fs=K2ndg=L
57 56 oveqd φf=FGg=KLr=Fs=Kx2ndgy=xLy
58 57 fveq1d φf=FGg=KLr=Fs=Kx2ndgyh=xLyh
59 eqidd φf=FGg=KLr=Fs=Kax=ax
60 50 58 59 oveq123d φf=FGg=KLr=Fs=Kx2ndgyhrxsx·˙syax=xLyhFxKx·˙Kyax
61 48 60 eqeq12d φf=FGg=KLr=Fs=Kayrxry·˙syx2ndfyh=x2ndgyhrxsx·˙syaxayFxFy·˙KyxGyh=xLyhFxKx·˙Kyax
62 61 ralbidv φf=FGg=KLr=Fs=KhxHyayrxry·˙syx2ndfyh=x2ndgyhrxsx·˙syaxhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙Kyax
63 62 2ralbidv φf=FGg=KLr=Fs=KxByBhxHyayrxry·˙syx2ndfyh=x2ndgyhrxsx·˙syaxxByBhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙Kyax
64 34 63 rabeqbidv φf=FGg=KLr=Fs=KaxBrxJsx|xByBhxHyayrxry·˙syx2ndfyh=x2ndgyhrxsx·˙syax=axBFxJKx|xByBhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙Kyax
65 20 28 64 csbied2 φf=FGg=KLr=F1stg/saxBrxJsx|xByBhxHyayrxry·˙syx2ndfyh=x2ndgyhrxsx·˙syax=axBFxJKx|xByBhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙Kyax
66 10 19 65 csbied2 φf=FGg=KL1stf/r1stg/saxBrxJsx|xByBhxHyayrxry·˙syx2ndfyh=x2ndgyhrxsx·˙syax=axBFxJKx|xByBhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙Kyax
67 df-br FCFuncDGFGCFuncD
68 6 67 sylib φFGCFuncD
69 df-br KCFuncDLKLCFuncD
70 7 69 sylib φKLCFuncD
71 ovex FxJKxV
72 71 rgenw xBFxJKxV
73 ixpexg xBFxJKxVxBFxJKxV
74 72 73 ax-mp xBFxJKxV
75 74 rabex axBFxJKx|xByBhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙KyaxV
76 75 a1i φaxBFxJKx|xByBhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙KyaxV
77 9 66 68 70 76 ovmpod φFGNKL=axBFxJKx|xByBhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙Kyax
78 77 eleq2d φAFGNKLAaxBFxJKx|xByBhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙Kyax
79 fveq1 a=Aay=Ay
80 79 oveq1d a=AayFxFy·˙KyxGyh=AyFxFy·˙KyxGyh
81 fveq1 a=Aax=Ax
82 81 oveq2d a=AxLyhFxKx·˙Kyax=xLyhFxKx·˙KyAx
83 80 82 eqeq12d a=AayFxFy·˙KyxGyh=xLyhFxKx·˙KyaxAyFxFy·˙KyxGyh=xLyhFxKx·˙KyAx
84 83 ralbidv a=AhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙KyaxhxHyAyFxFy·˙KyxGyh=xLyhFxKx·˙KyAx
85 84 2ralbidv a=AxByBhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙KyaxxByBhxHyAyFxFy·˙KyxGyh=xLyhFxKx·˙KyAx
86 85 elrab AaxBFxJKx|xByBhxHyayFxFy·˙KyxGyh=xLyhFxKx·˙KyaxAxBFxJKxxByBhxHyAyFxFy·˙KyxGyh=xLyhFxKx·˙KyAx
87 78 86 bitrdi φAFGNKLAxBFxJKxxByBhxHyAyFxFy·˙KyxGyh=xLyhFxKx·˙KyAx