Metamath Proof Explorer


Theorem isnsg3

Description: A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses isnsg3.1 X=BaseG
isnsg3.2 +˙=+G
isnsg3.3 -˙=-G
Assertion isnsg3 SNrmSGrpGSSubGrpGxXySx+˙y-˙xS

Proof

Step Hyp Ref Expression
1 isnsg3.1 X=BaseG
2 isnsg3.2 +˙=+G
3 isnsg3.3 -˙=-G
4 nsgsubg SNrmSGrpGSSubGrpG
5 1 2 3 nsgconj SNrmSGrpGxXySx+˙y-˙xS
6 5 3expb SNrmSGrpGxXySx+˙y-˙xS
7 6 ralrimivva SNrmSGrpGxXySx+˙y-˙xS
8 4 7 jca SNrmSGrpGSSubGrpGxXySx+˙y-˙xS
9 simpl SSubGrpGxXySx+˙y-˙xSSSubGrpG
10 subgrcl SSubGrpGGGrp
11 10 ad2antrr SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSGGrp
12 simprll SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSzX
13 eqid 0G=0G
14 eqid invgG=invgG
15 1 2 13 14 grplinv GGrpzXinvgGz+˙z=0G
16 11 12 15 syl2anc SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSinvgGz+˙z=0G
17 16 oveq1d SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSinvgGz+˙z+˙w=0G+˙w
18 1 14 grpinvcl GGrpzXinvgGzX
19 11 12 18 syl2anc SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSinvgGzX
20 simprlr SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSwX
21 1 2 grpass GGrpinvgGzXzXwXinvgGz+˙z+˙w=invgGz+˙z+˙w
22 11 19 12 20 21 syl13anc SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSinvgGz+˙z+˙w=invgGz+˙z+˙w
23 1 2 13 grplid GGrpwX0G+˙w=w
24 11 20 23 syl2anc SSubGrpGxXySx+˙y-˙xSzXwXz+˙wS0G+˙w=w
25 17 22 24 3eqtr3d SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSinvgGz+˙z+˙w=w
26 25 oveq1d SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSinvgGz+˙z+˙w-˙invgGz=w-˙invgGz
27 1 2 3 14 11 20 12 grpsubinv SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSw-˙invgGz=w+˙z
28 26 27 eqtrd SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSinvgGz+˙z+˙w-˙invgGz=w+˙z
29 simprr SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSz+˙wS
30 simplr SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSxXySx+˙y-˙xS
31 oveq1 x=invgGzx+˙y=invgGz+˙y
32 id x=invgGzx=invgGz
33 31 32 oveq12d x=invgGzx+˙y-˙x=invgGz+˙y-˙invgGz
34 33 eleq1d x=invgGzx+˙y-˙xSinvgGz+˙y-˙invgGzS
35 oveq2 y=z+˙winvgGz+˙y=invgGz+˙z+˙w
36 35 oveq1d y=z+˙winvgGz+˙y-˙invgGz=invgGz+˙z+˙w-˙invgGz
37 36 eleq1d y=z+˙winvgGz+˙y-˙invgGzSinvgGz+˙z+˙w-˙invgGzS
38 34 37 rspc2va invgGzXz+˙wSxXySx+˙y-˙xSinvgGz+˙z+˙w-˙invgGzS
39 19 29 30 38 syl21anc SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSinvgGz+˙z+˙w-˙invgGzS
40 28 39 eqeltrrd SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSw+˙zS
41 40 expr SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSw+˙zS
42 41 ralrimivva SSubGrpGxXySx+˙y-˙xSzXwXz+˙wSw+˙zS
43 1 2 isnsg2 SNrmSGrpGSSubGrpGzXwXz+˙wSw+˙zS
44 9 42 43 sylanbrc SSubGrpGxXySx+˙y-˙xSSNrmSGrpG
45 8 44 impbii SNrmSGrpGSSubGrpGxXySx+˙y-˙xS