| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isnsg3.1 |  | 
						
							| 2 |  | isnsg3.2 |  | 
						
							| 3 |  | isnsg3.3 |  | 
						
							| 4 |  | nsgsubg |  | 
						
							| 5 | 1 2 3 | nsgconj |  | 
						
							| 6 | 5 | 3expb |  | 
						
							| 7 | 6 | ralrimivva |  | 
						
							| 8 | 4 7 | jca |  | 
						
							| 9 |  | simpl |  | 
						
							| 10 |  | subgrcl |  | 
						
							| 11 | 10 | ad2antrr |  | 
						
							| 12 |  | simprll |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 1 2 13 14 | grplinv |  | 
						
							| 16 | 11 12 15 | syl2anc |  | 
						
							| 17 | 16 | oveq1d |  | 
						
							| 18 | 1 14 | grpinvcl |  | 
						
							| 19 | 11 12 18 | syl2anc |  | 
						
							| 20 |  | simprlr |  | 
						
							| 21 | 1 2 | grpass |  | 
						
							| 22 | 11 19 12 20 21 | syl13anc |  | 
						
							| 23 | 1 2 13 | grplid |  | 
						
							| 24 | 11 20 23 | syl2anc |  | 
						
							| 25 | 17 22 24 | 3eqtr3d |  | 
						
							| 26 | 25 | oveq1d |  | 
						
							| 27 | 1 2 3 14 11 20 12 | grpsubinv |  | 
						
							| 28 | 26 27 | eqtrd |  | 
						
							| 29 |  | simprr |  | 
						
							| 30 |  | simplr |  | 
						
							| 31 |  | oveq1 |  | 
						
							| 32 |  | id |  | 
						
							| 33 | 31 32 | oveq12d |  | 
						
							| 34 | 33 | eleq1d |  | 
						
							| 35 |  | oveq2 |  | 
						
							| 36 | 35 | oveq1d |  | 
						
							| 37 | 36 | eleq1d |  | 
						
							| 38 | 34 37 | rspc2va |  | 
						
							| 39 | 19 29 30 38 | syl21anc |  | 
						
							| 40 | 28 39 | eqeltrrd |  | 
						
							| 41 | 40 | expr |  | 
						
							| 42 | 41 | ralrimivva |  | 
						
							| 43 | 1 2 | isnsg2 |  | 
						
							| 44 | 9 42 43 | sylanbrc |  | 
						
							| 45 | 8 44 | impbii |  |