Description: A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isnsg3.1 | |
|
isnsg3.2 | |
||
isnsg3.3 | |
||
Assertion | isnsg3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnsg3.1 | |
|
2 | isnsg3.2 | |
|
3 | isnsg3.3 | |
|
4 | nsgsubg | |
|
5 | 1 2 3 | nsgconj | |
6 | 5 | 3expb | |
7 | 6 | ralrimivva | |
8 | 4 7 | jca | |
9 | simpl | |
|
10 | subgrcl | |
|
11 | 10 | ad2antrr | |
12 | simprll | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 1 2 13 14 | grplinv | |
16 | 11 12 15 | syl2anc | |
17 | 16 | oveq1d | |
18 | 1 14 | grpinvcl | |
19 | 11 12 18 | syl2anc | |
20 | simprlr | |
|
21 | 1 2 | grpass | |
22 | 11 19 12 20 21 | syl13anc | |
23 | 1 2 13 | grplid | |
24 | 11 20 23 | syl2anc | |
25 | 17 22 24 | 3eqtr3d | |
26 | 25 | oveq1d | |
27 | 1 2 3 14 11 20 12 | grpsubinv | |
28 | 26 27 | eqtrd | |
29 | simprr | |
|
30 | simplr | |
|
31 | oveq1 | |
|
32 | id | |
|
33 | 31 32 | oveq12d | |
34 | 33 | eleq1d | |
35 | oveq2 | |
|
36 | 35 | oveq1d | |
37 | 36 | eleq1d | |
38 | 34 37 | rspc2va | |
39 | 19 29 30 38 | syl21anc | |
40 | 28 39 | eqeltrrd | |
41 | 40 | expr | |
42 | 41 | ralrimivva | |
43 | 1 2 | isnsg2 | |
44 | 9 42 43 | sylanbrc | |
45 | 8 44 | impbii | |