| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sectpropd.1 |
|
| 2 |
|
sectpropd.2 |
|
| 3 |
|
simpr |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
df-iso |
|
| 7 |
6
|
mptrcl |
|
| 8 |
7
|
adantl |
|
| 9 |
|
eqid |
|
| 10 |
4 5 8 9
|
isofval2 |
|
| 11 |
|
df-mpo |
|
| 12 |
10 11
|
eqtrdi |
|
| 13 |
3 12
|
eleqtrd |
|
| 14 |
|
eloprab1st2nd |
|
| 15 |
13 14
|
syl |
|
| 16 |
1
|
adantr |
|
| 17 |
2
|
adantr |
|
| 18 |
16 17
|
invpropd |
|
| 19 |
18
|
oveqd |
|
| 20 |
19
|
dmeqd |
|
| 21 |
|
eleq1 |
|
| 22 |
21
|
anbi1d |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
dmeqd |
|
| 25 |
24
|
eqeq2d |
|
| 26 |
22 25
|
anbi12d |
|
| 27 |
|
eleq1 |
|
| 28 |
27
|
anbi2d |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
dmeqd |
|
| 31 |
30
|
eqeq2d |
|
| 32 |
28 31
|
anbi12d |
|
| 33 |
|
eqeq1 |
|
| 34 |
33
|
anbi2d |
|
| 35 |
26 32 34
|
eloprabi |
|
| 36 |
13 35
|
syl |
|
| 37 |
36
|
simprd |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
36
|
simplld |
|
| 41 |
16
|
homfeqbas |
|
| 42 |
40 41
|
eleqtrd |
|
| 43 |
42
|
elfvexd |
|
| 44 |
16 17 8 43
|
catpropd |
|
| 45 |
8 44
|
mpbid |
|
| 46 |
36
|
simplrd |
|
| 47 |
46 41
|
eleqtrd |
|
| 48 |
|
eqid |
|
| 49 |
38 39 45 42 47 48
|
isoval |
|
| 50 |
20 37 49
|
3eqtr4rd |
|
| 51 |
|
isofn |
|
| 52 |
45 51
|
syl |
|
| 53 |
|
fnbrovb |
|
| 54 |
52 42 47 53
|
syl12anc |
|
| 55 |
50 54
|
mpbid |
|
| 56 |
|
df-br |
|
| 57 |
55 56
|
sylib |
|
| 58 |
15 57
|
eqeltrd |
|