Metamath Proof Explorer


Theorem isorng

Description: An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018)

Ref Expression
Hypotheses isorng.0 B = Base R
isorng.1 0 ˙ = 0 R
isorng.2 · ˙ = R
isorng.3 ˙ = R
Assertion isorng R oRing R Ring R oGrp a B b B 0 ˙ ˙ a 0 ˙ ˙ b 0 ˙ ˙ a · ˙ b

Proof

Step Hyp Ref Expression
1 isorng.0 B = Base R
2 isorng.1 0 ˙ = 0 R
3 isorng.2 · ˙ = R
4 isorng.3 ˙ = R
5 elin R Ring oGrp R Ring R oGrp
6 5 anbi1i R Ring oGrp a B b B 0 ˙ ˙ a 0 ˙ ˙ b 0 ˙ ˙ a · ˙ b R Ring R oGrp a B b B 0 ˙ ˙ a 0 ˙ ˙ b 0 ˙ ˙ a · ˙ b
7 fvexd r = R r V
8 simpr r = R t = r t = r
9 simpl r = R t = r r = R
10 9 fveq2d r = R t = r r = R
11 10 3 eqtr4di r = R t = r r = · ˙
12 8 11 eqtrd r = R t = r t = · ˙
13 12 oveqd r = R t = r a t b = a · ˙ b
14 13 breq2d r = R t = r 0 ˙ l a t b 0 ˙ l a · ˙ b
15 14 imbi2d r = R t = r 0 ˙ l a 0 ˙ l b 0 ˙ l a t b 0 ˙ l a 0 ˙ l b 0 ˙ l a · ˙ b
16 15 2ralbidv r = R t = r a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a t b a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a · ˙ b
17 16 sbcbidv r = R t = r [˙ r / l]˙ a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a t b [˙ r / l]˙ a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a · ˙ b
18 7 17 sbcied r = R [˙ r / t]˙ [˙ r / l]˙ a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a t b [˙ r / l]˙ a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a · ˙ b
19 fvexd r = R Base r V
20 simpr r = R v = Base r v = Base r
21 fveq2 r = R Base r = Base R
22 21 1 eqtr4di r = R Base r = B
23 22 adantr r = R v = Base r Base r = B
24 20 23 eqtrd r = R v = Base r v = B
25 raleq v = B b v z l a z l b z l a t b b B z l a z l b z l a t b
26 25 raleqbi1dv v = B a v b v z l a z l b z l a t b a B b B z l a z l b z l a t b
27 24 26 syl r = R v = Base r a v b v z l a z l b z l a t b a B b B z l a z l b z l a t b
28 27 sbcbidv r = R v = Base r [˙ r / l]˙ a v b v z l a z l b z l a t b [˙ r / l]˙ a B b B z l a z l b z l a t b
29 28 sbcbidv r = R v = Base r [˙ r / t]˙ [˙ r / l]˙ a v b v z l a z l b z l a t b [˙ r / t]˙ [˙ r / l]˙ a B b B z l a z l b z l a t b
30 29 sbcbidv r = R v = Base r [˙0 r / z]˙ [˙ r / t]˙ [˙ r / l]˙ a v b v z l a z l b z l a t b [˙0 r / z]˙ [˙ r / t]˙ [˙ r / l]˙ a B b B z l a z l b z l a t b
31 19 30 sbcied r = R [˙Base r / v]˙ [˙0 r / z]˙ [˙ r / t]˙ [˙ r / l]˙ a v b v z l a z l b z l a t b [˙0 r / z]˙ [˙ r / t]˙ [˙ r / l]˙ a B b B z l a z l b z l a t b
32 fvexd r = R 0 r V
33 simpr r = R z = 0 r z = 0 r
34 fveq2 r = R 0 r = 0 R
35 34 2 eqtr4di r = R 0 r = 0 ˙
36 35 adantr r = R z = 0 r 0 r = 0 ˙
37 33 36 eqtrd r = R z = 0 r z = 0 ˙
38 37 breq1d r = R z = 0 r z l a 0 ˙ l a
39 37 breq1d r = R z = 0 r z l b 0 ˙ l b
40 38 39 anbi12d r = R z = 0 r z l a z l b 0 ˙ l a 0 ˙ l b
41 37 breq1d r = R z = 0 r z l a t b 0 ˙ l a t b
42 40 41 imbi12d r = R z = 0 r z l a z l b z l a t b 0 ˙ l a 0 ˙ l b 0 ˙ l a t b
43 42 2ralbidv r = R z = 0 r a B b B z l a z l b z l a t b a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a t b
44 43 sbcbidv r = R z = 0 r [˙ r / l]˙ a B b B z l a z l b z l a t b [˙ r / l]˙ a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a t b
45 44 sbcbidv r = R z = 0 r [˙ r / t]˙ [˙ r / l]˙ a B b B z l a z l b z l a t b [˙ r / t]˙ [˙ r / l]˙ a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a t b
46 32 45 sbcied r = R [˙0 r / z]˙ [˙ r / t]˙ [˙ r / l]˙ a B b B z l a z l b z l a t b [˙ r / t]˙ [˙ r / l]˙ a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a t b
47 31 46 bitr2d r = R [˙ r / t]˙ [˙ r / l]˙ a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a t b [˙Base r / v]˙ [˙0 r / z]˙ [˙ r / t]˙ [˙ r / l]˙ a v b v z l a z l b z l a t b
48 fvexd r = R r V
49 simpr r = R l = r l = r
50 simpl r = R l = r r = R
51 50 fveq2d r = R l = r r = R
52 51 4 eqtr4di r = R l = r r = ˙
53 49 52 eqtrd r = R l = r l = ˙
54 53 breqd r = R l = r 0 ˙ l a 0 ˙ ˙ a
55 53 breqd r = R l = r 0 ˙ l b 0 ˙ ˙ b
56 54 55 anbi12d r = R l = r 0 ˙ l a 0 ˙ l b 0 ˙ ˙ a 0 ˙ ˙ b
57 53 breqd r = R l = r 0 ˙ l a · ˙ b 0 ˙ ˙ a · ˙ b
58 56 57 imbi12d r = R l = r 0 ˙ l a 0 ˙ l b 0 ˙ l a · ˙ b 0 ˙ ˙ a 0 ˙ ˙ b 0 ˙ ˙ a · ˙ b
59 58 2ralbidv r = R l = r a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a · ˙ b a B b B 0 ˙ ˙ a 0 ˙ ˙ b 0 ˙ ˙ a · ˙ b
60 48 59 sbcied r = R [˙ r / l]˙ a B b B 0 ˙ l a 0 ˙ l b 0 ˙ l a · ˙ b a B b B 0 ˙ ˙ a 0 ˙ ˙ b 0 ˙ ˙ a · ˙ b
61 18 47 60 3bitr3d r = R [˙Base r / v]˙ [˙0 r / z]˙ [˙ r / t]˙ [˙ r / l]˙ a v b v z l a z l b z l a t b a B b B 0 ˙ ˙ a 0 ˙ ˙ b 0 ˙ ˙ a · ˙ b
62 df-orng oRing = r Ring oGrp | [˙Base r / v]˙ [˙0 r / z]˙ [˙ r / t]˙ [˙ r / l]˙ a v b v z l a z l b z l a t b
63 61 62 elrab2 R oRing R Ring oGrp a B b B 0 ˙ ˙ a 0 ˙ ˙ b 0 ˙ ˙ a · ˙ b
64 df-3an R Ring R oGrp a B b B 0 ˙ ˙ a 0 ˙ ˙ b 0 ˙ ˙ a · ˙ b R Ring R oGrp a B b B 0 ˙ ˙ a 0 ˙ ˙ b 0 ˙ ˙ a · ˙ b
65 6 63 64 3bitr4i R oRing R Ring R oGrp a B b B 0 ˙ ˙ a 0 ˙ ˙ b 0 ˙ ˙ a · ˙ b