Description: Two different ways to say subset relation persists across applications of a function. (Contributed by RP, 31-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | isotone1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 | |
|
2 | fveq2 | |
|
3 | 2 | sseq1d | |
4 | 1 3 | imbi12d | |
5 | sseq2 | |
|
6 | fveq2 | |
|
7 | 6 | sseq2d | |
8 | 5 7 | imbi12d | |
9 | 4 8 | cbvral2vw | |
10 | ssun1 | |
|
11 | simprl | |
|
12 | pwuncl | |
|
13 | 12 | adantl | |
14 | simpl | |
|
15 | sseq1 | |
|
16 | fveq2 | |
|
17 | 16 | sseq1d | |
18 | 15 17 | imbi12d | |
19 | sseq2 | |
|
20 | fveq2 | |
|
21 | 20 | sseq2d | |
22 | 19 21 | imbi12d | |
23 | 18 22 | rspc2va | |
24 | 11 13 14 23 | syl21anc | |
25 | 10 24 | mpi | |
26 | ssun2 | |
|
27 | simprr | |
|
28 | sseq1 | |
|
29 | fveq2 | |
|
30 | 29 | sseq1d | |
31 | 28 30 | imbi12d | |
32 | sseq2 | |
|
33 | 20 | sseq2d | |
34 | 32 33 | imbi12d | |
35 | 31 34 | rspc2va | |
36 | 27 13 14 35 | syl21anc | |
37 | 26 36 | mpi | |
38 | 25 37 | unssd | |
39 | 38 | ralrimivva | |
40 | ssequn1 | |
|
41 | 2 | uneq1d | |
42 | uneq1 | |
|
43 | 42 | fveq2d | |
44 | 41 43 | sseq12d | |
45 | 6 | uneq2d | |
46 | uneq2 | |
|
47 | 46 | fveq2d | |
48 | 45 47 | sseq12d | |
49 | 44 48 | rspc2va | |
50 | 49 | ancoms | |
51 | 50 | unssad | |
52 | 51 | adantr | |
53 | fveq2 | |
|
54 | 53 | adantl | |
55 | 52 54 | sseqtrd | |
56 | 55 | ex | |
57 | 40 56 | biimtrid | |
58 | 57 | ralrimivva | |
59 | 39 58 | impbii | |
60 | 9 59 | bitri | |