Metamath Proof Explorer


Theorem isotone1

Description: Two different ways to say subset relation persists across applications of a function. (Contributed by RP, 31-May-2021)

Ref Expression
Assertion isotone1 a𝒫Ab𝒫AabFaFba𝒫Ab𝒫AFaFbFab

Proof

Step Hyp Ref Expression
1 sseq1 a=cabcb
2 fveq2 a=cFa=Fc
3 2 sseq1d a=cFaFbFcFb
4 1 3 imbi12d a=cabFaFbcbFcFb
5 sseq2 b=dcbcd
6 fveq2 b=dFb=Fd
7 6 sseq2d b=dFcFbFcFd
8 5 7 imbi12d b=dcbFcFbcdFcFd
9 4 8 cbvral2vw a𝒫Ab𝒫AabFaFbc𝒫Ad𝒫AcdFcFd
10 ssun1 aab
11 simprl c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫Aa𝒫A
12 pwuncl a𝒫Ab𝒫Aab𝒫A
13 12 adantl c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫Aab𝒫A
14 simpl c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫Ac𝒫Ad𝒫AcdFcFd
15 sseq1 c=acdad
16 fveq2 c=aFc=Fa
17 16 sseq1d c=aFcFdFaFd
18 15 17 imbi12d c=acdFcFdadFaFd
19 sseq2 d=abadaab
20 fveq2 d=abFd=Fab
21 20 sseq2d d=abFaFdFaFab
22 19 21 imbi12d d=abadFaFdaabFaFab
23 18 22 rspc2va a𝒫Aab𝒫Ac𝒫Ad𝒫AcdFcFdaabFaFab
24 11 13 14 23 syl21anc c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AaabFaFab
25 10 24 mpi c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AFaFab
26 ssun2 bab
27 simprr c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫Ab𝒫A
28 sseq1 c=bcdbd
29 fveq2 c=bFc=Fb
30 29 sseq1d c=bFcFdFbFd
31 28 30 imbi12d c=bcdFcFdbdFbFd
32 sseq2 d=abbdbab
33 20 sseq2d d=abFbFdFbFab
34 32 33 imbi12d d=abbdFbFdbabFbFab
35 31 34 rspc2va b𝒫Aab𝒫Ac𝒫Ad𝒫AcdFcFdbabFbFab
36 27 13 14 35 syl21anc c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AbabFbFab
37 26 36 mpi c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AFbFab
38 25 37 unssd c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AFaFbFab
39 38 ralrimivva c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AFaFbFab
40 ssequn1 cdcd=d
41 2 uneq1d a=cFaFb=FcFb
42 uneq1 a=cab=cb
43 42 fveq2d a=cFab=Fcb
44 41 43 sseq12d a=cFaFbFabFcFbFcb
45 6 uneq2d b=dFcFb=FcFd
46 uneq2 b=dcb=cd
47 46 fveq2d b=dFcb=Fcd
48 45 47 sseq12d b=dFcFbFcbFcFdFcd
49 44 48 rspc2va c𝒫Ad𝒫Aa𝒫Ab𝒫AFaFbFabFcFdFcd
50 49 ancoms a𝒫Ab𝒫AFaFbFabc𝒫Ad𝒫AFcFdFcd
51 50 unssad a𝒫Ab𝒫AFaFbFabc𝒫Ad𝒫AFcFcd
52 51 adantr a𝒫Ab𝒫AFaFbFabc𝒫Ad𝒫Acd=dFcFcd
53 fveq2 cd=dFcd=Fd
54 53 adantl a𝒫Ab𝒫AFaFbFabc𝒫Ad𝒫Acd=dFcd=Fd
55 52 54 sseqtrd a𝒫Ab𝒫AFaFbFabc𝒫Ad𝒫Acd=dFcFd
56 55 ex a𝒫Ab𝒫AFaFbFabc𝒫Ad𝒫Acd=dFcFd
57 40 56 biimtrid a𝒫Ab𝒫AFaFbFabc𝒫Ad𝒫AcdFcFd
58 57 ralrimivva a𝒫Ab𝒫AFaFbFabc𝒫Ad𝒫AcdFcFd
59 39 58 impbii c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AFaFbFab
60 9 59 bitri a𝒫Ab𝒫AabFaFba𝒫Ab𝒫AFaFbFab