Metamath Proof Explorer


Theorem isotone2

Description: Two different ways to say subset relation persists across applications of a function. (Contributed by RP, 31-May-2021)

Ref Expression
Assertion isotone2 a𝒫Ab𝒫AabFaFba𝒫Ab𝒫AFabFaFb

Proof

Step Hyp Ref Expression
1 sseq1 a=cabcb
2 fveq2 a=cFa=Fc
3 2 sseq1d a=cFaFbFcFb
4 1 3 imbi12d a=cabFaFbcbFcFb
5 sseq2 b=dcbcd
6 fveq2 b=dFb=Fd
7 6 sseq2d b=dFcFbFcFd
8 5 7 imbi12d b=dcbFcFbcdFcFd
9 4 8 cbvral2vw a𝒫Ab𝒫AabFaFbc𝒫Ad𝒫AcdFcFd
10 inss1 aba
11 inss2 abb
12 elpwi b𝒫AbA
13 11 12 sstrid b𝒫AabA
14 vex bV
15 14 inex2 abV
16 15 elpw ab𝒫AabA
17 13 16 sylibr b𝒫Aab𝒫A
18 17 ad2antll c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫Aab𝒫A
19 simprl c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫Aa𝒫A
20 simpl c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫Ac𝒫Ad𝒫AcdFcFd
21 sseq1 c=abcdabd
22 fveq2 c=abFc=Fab
23 22 sseq1d c=abFcFdFabFd
24 21 23 imbi12d c=abcdFcFdabdFabFd
25 sseq2 d=aabdaba
26 fveq2 d=aFd=Fa
27 26 sseq2d d=aFabFdFabFa
28 25 27 imbi12d d=aabdFabFdabaFabFa
29 24 28 rspc2va ab𝒫Aa𝒫Ac𝒫Ad𝒫AcdFcFdabaFabFa
30 18 19 20 29 syl21anc c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AabaFabFa
31 10 30 mpi c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AFabFa
32 simprr c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫Ab𝒫A
33 sseq2 d=babdabb
34 fveq2 d=bFd=Fb
35 34 sseq2d d=bFabFdFabFb
36 33 35 imbi12d d=babdFabFdabbFabFb
37 24 36 rspc2va ab𝒫Ab𝒫Ac𝒫Ad𝒫AcdFcFdabbFabFb
38 18 32 20 37 syl21anc c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AabbFabFb
39 11 38 mpi c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AFabFb
40 31 39 ssind c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AFabFaFb
41 40 ralrimivva c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AFabFaFb
42 dfss cdc=cd
43 fveq2 c=cdFc=Fcd
44 43 adantl a𝒫Ab𝒫AFabFaFbc𝒫Ad𝒫Ac=cdFc=Fcd
45 ineq1 a=cab=cb
46 45 fveq2d a=cFab=Fcb
47 2 ineq1d a=cFaFb=FcFb
48 46 47 sseq12d a=cFabFaFbFcbFcFb
49 ineq2 b=dcb=cd
50 49 fveq2d b=dFcb=Fcd
51 6 ineq2d b=dFcFb=FcFd
52 50 51 sseq12d b=dFcbFcFbFcdFcFd
53 48 52 rspc2va c𝒫Ad𝒫Aa𝒫Ab𝒫AFabFaFbFcdFcFd
54 53 ancoms a𝒫Ab𝒫AFabFaFbc𝒫Ad𝒫AFcdFcFd
55 inss2 FcFdFd
56 54 55 sstrdi a𝒫Ab𝒫AFabFaFbc𝒫Ad𝒫AFcdFd
57 56 adantr a𝒫Ab𝒫AFabFaFbc𝒫Ad𝒫Ac=cdFcdFd
58 44 57 eqsstrd a𝒫Ab𝒫AFabFaFbc𝒫Ad𝒫Ac=cdFcFd
59 58 ex a𝒫Ab𝒫AFabFaFbc𝒫Ad𝒫Ac=cdFcFd
60 42 59 biimtrid a𝒫Ab𝒫AFabFaFbc𝒫Ad𝒫AcdFcFd
61 60 ralrimivva a𝒫Ab𝒫AFabFaFbc𝒫Ad𝒫AcdFcFd
62 41 61 impbii c𝒫Ad𝒫AcdFcFda𝒫Ab𝒫AFabFaFb
63 9 62 bitri a𝒫Ab𝒫AabFaFba𝒫Ab𝒫AFabFaFb