Description: Two different ways to say subset relation persists across applications of a function. (Contributed by RP, 31-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | isotone2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 | |
|
2 | fveq2 | |
|
3 | 2 | sseq1d | |
4 | 1 3 | imbi12d | |
5 | sseq2 | |
|
6 | fveq2 | |
|
7 | 6 | sseq2d | |
8 | 5 7 | imbi12d | |
9 | 4 8 | cbvral2vw | |
10 | inss1 | |
|
11 | inss2 | |
|
12 | elpwi | |
|
13 | 11 12 | sstrid | |
14 | vex | |
|
15 | 14 | inex2 | |
16 | 15 | elpw | |
17 | 13 16 | sylibr | |
18 | 17 | ad2antll | |
19 | simprl | |
|
20 | simpl | |
|
21 | sseq1 | |
|
22 | fveq2 | |
|
23 | 22 | sseq1d | |
24 | 21 23 | imbi12d | |
25 | sseq2 | |
|
26 | fveq2 | |
|
27 | 26 | sseq2d | |
28 | 25 27 | imbi12d | |
29 | 24 28 | rspc2va | |
30 | 18 19 20 29 | syl21anc | |
31 | 10 30 | mpi | |
32 | simprr | |
|
33 | sseq2 | |
|
34 | fveq2 | |
|
35 | 34 | sseq2d | |
36 | 33 35 | imbi12d | |
37 | 24 36 | rspc2va | |
38 | 18 32 20 37 | syl21anc | |
39 | 11 38 | mpi | |
40 | 31 39 | ssind | |
41 | 40 | ralrimivva | |
42 | dfss | |
|
43 | fveq2 | |
|
44 | 43 | adantl | |
45 | ineq1 | |
|
46 | 45 | fveq2d | |
47 | 2 | ineq1d | |
48 | 46 47 | sseq12d | |
49 | ineq2 | |
|
50 | 49 | fveq2d | |
51 | 6 | ineq2d | |
52 | 50 51 | sseq12d | |
53 | 48 52 | rspc2va | |
54 | 53 | ancoms | |
55 | inss2 | |
|
56 | 54 55 | sstrdi | |
57 | 56 | adantr | |
58 | 44 57 | eqsstrd | |
59 | 58 | ex | |
60 | 42 59 | biimtrid | |
61 | 60 | ralrimivva | |
62 | 41 61 | impbii | |
63 | 9 62 | bitri | |