Metamath Proof Explorer


Theorem isph

Description: The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses isph.1 X=BaseSetU
isph.2 G=+vU
isph.3 M=-vU
isph.6 N=normCVU
Assertion isph UCPreHilOLDUNrmCVecxXyXNxGy2+NxMy2=2Nx2+Ny2

Proof

Step Hyp Ref Expression
1 isph.1 X=BaseSetU
2 isph.2 G=+vU
3 isph.3 M=-vU
4 isph.6 N=normCVU
5 phnv UCPreHilOLDUNrmCVec
6 eqid 𝑠OLDU=𝑠OLDU
7 2 6 4 nvop UNrmCVecU=G𝑠OLDUN
8 eleq1 U=G𝑠OLDUNUCPreHilOLDG𝑠OLDUNCPreHilOLD
9 2 fvexi GV
10 fvex 𝑠OLDUV
11 4 fvexi NV
12 1 2 bafval X=ranG
13 12 isphg GV𝑠OLDUVNVG𝑠OLDUNCPreHilOLDG𝑠OLDUNNrmCVecxXyXNxGy2+NxG-1𝑠OLDUy2=2Nx2+Ny2
14 9 10 11 13 mp3an G𝑠OLDUNCPreHilOLDG𝑠OLDUNNrmCVecxXyXNxGy2+NxG-1𝑠OLDUy2=2Nx2+Ny2
15 1 2 6 3 nvmval UNrmCVecxXyXxMy=xG-1𝑠OLDUy
16 15 3expa UNrmCVecxXyXxMy=xG-1𝑠OLDUy
17 16 fveq2d UNrmCVecxXyXNxMy=NxG-1𝑠OLDUy
18 17 oveq1d UNrmCVecxXyXNxMy2=NxG-1𝑠OLDUy2
19 18 oveq2d UNrmCVecxXyXNxGy2+NxMy2=NxGy2+NxG-1𝑠OLDUy2
20 19 eqeq1d UNrmCVecxXyXNxGy2+NxMy2=2Nx2+Ny2NxGy2+NxG-1𝑠OLDUy2=2Nx2+Ny2
21 20 ralbidva UNrmCVecxXyXNxGy2+NxMy2=2Nx2+Ny2yXNxGy2+NxG-1𝑠OLDUy2=2Nx2+Ny2
22 21 ralbidva UNrmCVecxXyXNxGy2+NxMy2=2Nx2+Ny2xXyXNxGy2+NxG-1𝑠OLDUy2=2Nx2+Ny2
23 22 pm5.32i UNrmCVecxXyXNxGy2+NxMy2=2Nx2+Ny2UNrmCVecxXyXNxGy2+NxG-1𝑠OLDUy2=2Nx2+Ny2
24 eleq1 U=G𝑠OLDUNUNrmCVecG𝑠OLDUNNrmCVec
25 24 anbi1d U=G𝑠OLDUNUNrmCVecxXyXNxGy2+NxG-1𝑠OLDUy2=2Nx2+Ny2G𝑠OLDUNNrmCVecxXyXNxGy2+NxG-1𝑠OLDUy2=2Nx2+Ny2
26 23 25 bitr2id U=G𝑠OLDUNG𝑠OLDUNNrmCVecxXyXNxGy2+NxG-1𝑠OLDUy2=2Nx2+Ny2UNrmCVecxXyXNxGy2+NxMy2=2Nx2+Ny2
27 14 26 bitrid U=G𝑠OLDUNG𝑠OLDUNCPreHilOLDUNrmCVecxXyXNxGy2+NxMy2=2Nx2+Ny2
28 8 27 bitrd U=G𝑠OLDUNUCPreHilOLDUNrmCVecxXyXNxGy2+NxMy2=2Nx2+Ny2
29 7 28 syl UNrmCVecUCPreHilOLDUNrmCVecxXyXNxGy2+NxMy2=2Nx2+Ny2
30 29 bianabs UNrmCVecUCPreHilOLDxXyXNxGy2+NxMy2=2Nx2+Ny2
31 5 30 biadanii UCPreHilOLDUNrmCVecxXyXNxGy2+NxMy2=2Nx2+Ny2