Description: The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isph.1 | |
|
isph.2 | |
||
isph.3 | |
||
isph.6 | |
||
Assertion | isph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isph.1 | |
|
2 | isph.2 | |
|
3 | isph.3 | |
|
4 | isph.6 | |
|
5 | phnv | |
|
6 | eqid | |
|
7 | 2 6 4 | nvop | |
8 | eleq1 | |
|
9 | 2 | fvexi | |
10 | fvex | |
|
11 | 4 | fvexi | |
12 | 1 2 | bafval | |
13 | 12 | isphg | |
14 | 9 10 11 13 | mp3an | |
15 | 1 2 6 3 | nvmval | |
16 | 15 | 3expa | |
17 | 16 | fveq2d | |
18 | 17 | oveq1d | |
19 | 18 | oveq2d | |
20 | 19 | eqeq1d | |
21 | 20 | ralbidva | |
22 | 21 | ralbidva | |
23 | 22 | pm5.32i | |
24 | eleq1 | |
|
25 | 24 | anbi1d | |
26 | 23 25 | bitr2id | |
27 | 14 26 | bitrid | |
28 | 8 27 | bitrd | |
29 | 7 28 | syl | |
30 | 29 | bianabs | |
31 | 5 30 | biadanii | |