Metamath Proof Explorer


Theorem isstruct2

Description: The property of being a structure with components in ( 1stX ) ... ( 2ndX ) . (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Assertion isstruct2 FStructXX×FunFdomFX

Proof

Step Hyp Ref Expression
1 brstruct RelStruct
2 1 brrelex12i FStructXFVXV
3 ssun1 FF
4 undif1 F=F
5 3 4 sseqtrri FF
6 simp2 X×FunFdomFXFunF
7 6 funfnd X×FunFdomFXFFndomF
8 elinel2 X×X×
9 1st2nd2 X×X=1stX2ndX
10 8 9 syl X×X=1stX2ndX
11 10 3ad2ant1 X×FunFdomFXX=1stX2ndX
12 11 fveq2d X×FunFdomFXX=1stX2ndX
13 df-ov 1stX2ndX=1stX2ndX
14 fzfi 1stX2ndXFin
15 13 14 eqeltrri 1stX2ndXFin
16 12 15 eqeltrdi X×FunFdomFXXFin
17 difss FF
18 dmss FFdomFdomF
19 17 18 ax-mp domFdomF
20 simp3 X×FunFdomFXdomFX
21 19 20 sstrid X×FunFdomFXdomFX
22 16 21 ssfid X×FunFdomFXdomFFin
23 fnfi FFndomFdomFFinFFin
24 7 22 23 syl2anc X×FunFdomFXFFin
25 p0ex V
26 unexg FFinVFV
27 24 25 26 sylancl X×FunFdomFXFV
28 ssexg FFFVFV
29 5 27 28 sylancr X×FunFdomFXFV
30 elex X×XV
31 30 3ad2ant1 X×FunFdomFXXV
32 29 31 jca X×FunFdomFXFVXV
33 simpr f=Fx=Xx=X
34 33 eleq1d f=Fx=Xx×X×
35 simpl f=Fx=Xf=F
36 35 difeq1d f=Fx=Xf=F
37 36 funeqd f=Fx=XFunfFunF
38 35 dmeqd f=Fx=Xdomf=domF
39 33 fveq2d f=Fx=Xx=X
40 38 39 sseq12d f=Fx=XdomfxdomFX
41 34 37 40 3anbi123d f=Fx=Xx×FunfdomfxX×FunFdomFX
42 df-struct Struct=fx|x×Funfdomfx
43 41 42 brabga FVXVFStructXX×FunFdomFX
44 2 32 43 pm5.21nii FStructXX×FunFdomFX