Metamath Proof Explorer


Theorem isumclim3

Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that j must not occur in A . (Contributed by NM, 9-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumclim3.1 Z=M
isumclim3.2 φM
isumclim3.3 φFdom
isumclim3.4 φkZA
isumclim3.5 φjZFj=k=MjA
Assertion isumclim3 φFkZA

Proof

Step Hyp Ref Expression
1 isumclim3.1 Z=M
2 isumclim3.2 φM
3 isumclim3.3 φFdom
4 isumclim3.4 φkZA
5 isumclim3.5 φjZFj=k=MjA
6 climdm FdomFF
7 3 6 sylib φFF
8 sumfc mZkZAm=kZA
9 eqidd φmZkZAm=kZAm
10 4 fmpttd φkZA:Z
11 10 ffvelcdmda φmZkZAm
12 1 2 9 11 isum φmZkZAm=seqM+kZA
13 8 12 eqtr3id φkZA=seqM+kZA
14 seqex seqM+kZAV
15 14 a1i φseqM+kZAV
16 fvres mMjkZAMjm=kZAm
17 fzssuz MjM
18 17 1 sseqtrri MjZ
19 resmpt MjZkZAMj=kMjA
20 18 19 ax-mp kZAMj=kMjA
21 20 fveq1i kZAMjm=kMjAm
22 16 21 eqtr3di mMjkZAm=kMjAm
23 22 sumeq2i m=MjkZAm=m=MjkMjAm
24 sumfc m=MjkMjAm=k=MjA
25 23 24 eqtri m=MjkZAm=k=MjA
26 eqidd φjZmMjkZAm=kZAm
27 simpr φjZjZ
28 27 1 eleqtrdi φjZjM
29 simpl φjZφ
30 elfzuz mMjmM
31 30 1 eleqtrrdi mMjmZ
32 29 31 11 syl2an φjZmMjkZAm
33 26 28 32 fsumser φjZm=MjkZAm=seqM+kZAj
34 25 33 eqtr3id φjZk=MjA=seqM+kZAj
35 5 34 eqtr2d φjZseqM+kZAj=Fj
36 1 15 3 2 35 climeq φseqM+kZAxFx
37 36 iotabidv φιx|seqM+kZAx=ιx|Fx
38 df-fv seqM+kZA=ιx|seqM+kZAx
39 df-fv F=ιx|Fx
40 37 38 39 3eqtr4g φseqM+kZA=F
41 13 40 eqtrd φkZA=F
42 7 41 breqtrrd φFkZA