Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that j must not occur in A . (Contributed by NM, 9-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isumclim3.1 | |
|
isumclim3.2 | |
||
isumclim3.3 | |
||
isumclim3.4 | |
||
isumclim3.5 | |
||
Assertion | isumclim3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumclim3.1 | |
|
2 | isumclim3.2 | |
|
3 | isumclim3.3 | |
|
4 | isumclim3.4 | |
|
5 | isumclim3.5 | |
|
6 | climdm | |
|
7 | 3 6 | sylib | |
8 | sumfc | |
|
9 | eqidd | |
|
10 | 4 | fmpttd | |
11 | 10 | ffvelcdmda | |
12 | 1 2 9 11 | isum | |
13 | 8 12 | eqtr3id | |
14 | seqex | |
|
15 | 14 | a1i | |
16 | fvres | |
|
17 | fzssuz | |
|
18 | 17 1 | sseqtrri | |
19 | resmpt | |
|
20 | 18 19 | ax-mp | |
21 | 20 | fveq1i | |
22 | 16 21 | eqtr3di | |
23 | 22 | sumeq2i | |
24 | sumfc | |
|
25 | 23 24 | eqtri | |
26 | eqidd | |
|
27 | simpr | |
|
28 | 27 1 | eleqtrdi | |
29 | simpl | |
|
30 | elfzuz | |
|
31 | 30 1 | eleqtrrdi | |
32 | 29 31 11 | syl2an | |
33 | 26 28 32 | fsumser | |
34 | 25 33 | eqtr3id | |
35 | 5 34 | eqtr2d | |
36 | 1 15 3 2 35 | climeq | |
37 | 36 | iotabidv | |
38 | df-fv | |
|
39 | df-fv | |
|
40 | 37 38 39 | 3eqtr4g | |
41 | 13 40 | eqtrd | |
42 | 7 41 | breqtrrd | |