Step |
Hyp |
Ref |
Expression |
1 |
|
itgmulc2nc.1 |
|
2 |
|
itgmulc2nc.2 |
|
3 |
|
itgmulc2nc.3 |
|
4 |
|
itgmulc2nc.m |
|
5 |
|
itgmulc2nc.4 |
|
6 |
|
itgmulc2nc.5 |
|
7 |
|
itgmulc2nc.6 |
|
8 |
|
itgmulc2nc.7 |
|
9 |
|
elrege0 |
|
10 |
6 8 9
|
sylanbrc |
|
11 |
|
0e0icopnf |
|
12 |
11
|
a1i |
|
13 |
10 12
|
ifclda |
|
14 |
13
|
adantr |
|
15 |
14
|
fmpttd |
|
16 |
6 8
|
iblpos |
|
17 |
3 16
|
mpbid |
|
18 |
17
|
simprd |
|
19 |
|
elrege0 |
|
20 |
5 7 19
|
sylanbrc |
|
21 |
15 18 20
|
itg2mulc |
|
22 |
|
reex |
|
23 |
22
|
a1i |
|
24 |
1
|
adantr |
|
25 |
|
fconstmpt |
|
26 |
25
|
a1i |
|
27 |
|
eqidd |
|
28 |
23 24 14 26 27
|
offval2 |
|
29 |
|
ovif2 |
|
30 |
1
|
mul01d |
|
31 |
30
|
adantr |
|
32 |
31
|
ifeq2d |
|
33 |
29 32
|
syl5eq |
|
34 |
33
|
mpteq2dva |
|
35 |
28 34
|
eqtrd |
|
36 |
35
|
fveq2d |
|
37 |
21 36
|
eqtr3d |
|
38 |
6 3 8
|
itgposval |
|
39 |
38
|
oveq2d |
|
40 |
5
|
adantr |
|
41 |
40 6
|
remulcld |
|
42 |
1 2 3 4
|
iblmulc2nc |
|
43 |
7
|
adantr |
|
44 |
40 6 43 8
|
mulge0d |
|
45 |
41 42 44
|
itgposval |
|
46 |
37 39 45
|
3eqtr4d |
|