Metamath Proof Explorer


Theorem itgmulc2nclem1

Description: Lemma for itgmulc2nc ; cf. itgmulc2lem1 . (Contributed by Brendan Leahy, 17-Nov-2017)

Ref Expression
Hypotheses itgmulc2nc.1 φ C
itgmulc2nc.2 φ x A B V
itgmulc2nc.3 φ x A B 𝐿 1
itgmulc2nc.m φ x A C B MblFn
itgmulc2nc.4 φ C
itgmulc2nc.5 φ x A B
itgmulc2nc.6 φ 0 C
itgmulc2nc.7 φ x A 0 B
Assertion itgmulc2nclem1 φ C A B dx = A C B dx

Proof

Step Hyp Ref Expression
1 itgmulc2nc.1 φ C
2 itgmulc2nc.2 φ x A B V
3 itgmulc2nc.3 φ x A B 𝐿 1
4 itgmulc2nc.m φ x A C B MblFn
5 itgmulc2nc.4 φ C
6 itgmulc2nc.5 φ x A B
7 itgmulc2nc.6 φ 0 C
8 itgmulc2nc.7 φ x A 0 B
9 elrege0 B 0 +∞ B 0 B
10 6 8 9 sylanbrc φ x A B 0 +∞
11 0e0icopnf 0 0 +∞
12 11 a1i φ ¬ x A 0 0 +∞
13 10 12 ifclda φ if x A B 0 0 +∞
14 13 adantr φ x if x A B 0 0 +∞
15 14 fmpttd φ x if x A B 0 : 0 +∞
16 6 8 iblpos φ x A B 𝐿 1 x A B MblFn 2 x if x A B 0
17 3 16 mpbid φ x A B MblFn 2 x if x A B 0
18 17 simprd φ 2 x if x A B 0
19 elrege0 C 0 +∞ C 0 C
20 5 7 19 sylanbrc φ C 0 +∞
21 15 18 20 itg2mulc φ 2 × C × f x if x A B 0 = C 2 x if x A B 0
22 reex V
23 22 a1i φ V
24 1 adantr φ x C
25 fconstmpt × C = x C
26 25 a1i φ × C = x C
27 eqidd φ x if x A B 0 = x if x A B 0
28 23 24 14 26 27 offval2 φ × C × f x if x A B 0 = x C if x A B 0
29 ovif2 C if x A B 0 = if x A C B C 0
30 1 mul01d φ C 0 = 0
31 30 adantr φ x C 0 = 0
32 31 ifeq2d φ x if x A C B C 0 = if x A C B 0
33 29 32 syl5eq φ x C if x A B 0 = if x A C B 0
34 33 mpteq2dva φ x C if x A B 0 = x if x A C B 0
35 28 34 eqtrd φ × C × f x if x A B 0 = x if x A C B 0
36 35 fveq2d φ 2 × C × f x if x A B 0 = 2 x if x A C B 0
37 21 36 eqtr3d φ C 2 x if x A B 0 = 2 x if x A C B 0
38 6 3 8 itgposval φ A B dx = 2 x if x A B 0
39 38 oveq2d φ C A B dx = C 2 x if x A B 0
40 5 adantr φ x A C
41 40 6 remulcld φ x A C B
42 1 2 3 4 iblmulc2nc φ x A C B 𝐿 1
43 7 adantr φ x A 0 C
44 40 6 43 8 mulge0d φ x A 0 C B
45 41 42 44 itgposval φ A C B dx = 2 x if x A C B 0
46 37 39 45 3eqtr4d φ C A B dx = A C B dx