| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgmulc2nc.1 |  | 
						
							| 2 |  | itgmulc2nc.2 |  | 
						
							| 3 |  | itgmulc2nc.3 |  | 
						
							| 4 |  | itgmulc2nc.m |  | 
						
							| 5 |  | itgmulc2nc.4 |  | 
						
							| 6 |  | itgmulc2nc.5 |  | 
						
							| 7 |  | itgmulc2nc.6 |  | 
						
							| 8 |  | itgmulc2nc.7 |  | 
						
							| 9 |  | elrege0 |  | 
						
							| 10 | 6 8 9 | sylanbrc |  | 
						
							| 11 |  | 0e0icopnf |  | 
						
							| 12 | 11 | a1i |  | 
						
							| 13 | 10 12 | ifclda |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 14 | fmpttd |  | 
						
							| 16 | 6 8 | iblpos |  | 
						
							| 17 | 3 16 | mpbid |  | 
						
							| 18 | 17 | simprd |  | 
						
							| 19 |  | elrege0 |  | 
						
							| 20 | 5 7 19 | sylanbrc |  | 
						
							| 21 | 15 18 20 | itg2mulc |  | 
						
							| 22 |  | reex |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 | 1 | adantr |  | 
						
							| 25 |  | fconstmpt |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 |  | eqidd |  | 
						
							| 28 | 23 24 14 26 27 | offval2 |  | 
						
							| 29 |  | ovif2 |  | 
						
							| 30 | 1 | mul01d |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 31 | ifeq2d |  | 
						
							| 33 | 29 32 | eqtrid |  | 
						
							| 34 | 33 | mpteq2dva |  | 
						
							| 35 | 28 34 | eqtrd |  | 
						
							| 36 | 35 | fveq2d |  | 
						
							| 37 | 21 36 | eqtr3d |  | 
						
							| 38 | 6 3 8 | itgposval |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 | 5 | adantr |  | 
						
							| 41 | 40 6 | remulcld |  | 
						
							| 42 | 1 2 3 4 | iblmulc2nc |  | 
						
							| 43 | 7 | adantr |  | 
						
							| 44 | 40 6 43 8 | mulge0d |  | 
						
							| 45 | 41 42 44 | itgposval |  | 
						
							| 46 | 37 39 45 | 3eqtr4d |  |